Data:
Prelegent:
Sygnały instrumentalne uzyskane dla złożonych próbek posiadają duży zasób informacji. W efekcie, bardzo kłopotliwe staje się analizowanie złożonych danych eksperymentalnych bez użycia technik statystycznej analizy wielowymiarowej takich jak metoda głównych składowych (z ang. Principal Component Analysis, PCA). W standardowych zastosowaniach metoda PCA jest używana do kompresji danych poprzez porządkowanie informacji wg. malejącej wariancji, modelowania i wizualizacji struktury danych, określania ilości chemicznie/fizycznie interpretowalnych składowych, redukcji poziomu szumów w danych.