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Abstract. We study the discrimination of von Neumann measurement in the scenario
when we are given a reference measurement and some other measurement. The aim of
the discrimination is to determine whether the other measurement is the same as the
first one. We consider the cases when the reference measurement is given without the
classical description and when its classical description is known. Both cases are studied
in the symmetric and asymmetric discrimination setups. Moreover, we provide optimal
certification schemes enabling us to certify a known quantum measurement against the
unknown one.

1. Introduction

The need for appropriate certification tools is one of the barriers to the development
of large-scale quantum technologies. [1] In this work, we propose tests that verify if a
given device corresponds to its classical description or the reference device.

But why should we care about the discrimination of devices which description we do
not know? A lot is known about discrimination of quantum states, channels and mea-
surements, which description we do know. In the standard discrimination problem, there
are two quantum objects, and one of them is secretly chosen. The goal of discrimination
is to decide which of the objects was chosen. These objects can be quantum states but
also quantum channels and measurements. However, what if we were given a reference
quantum measurement or channel instead of its classical description? Then we may want
to discriminate them regardless of their classical descriptions. Therefore, we arrive at
the new problem of discrimination of unknown objects.

Discrimination of known quantum channels was mainly studied for certain classes of
channels like unitary channels [2–4]. Advantage of using entangled states for minimum-
error discrimination of quantum channels was studied in [5, 6]. General conditions
when quantum channels can be discriminated in the minimum error, unambiguous and
asymmetric scenarios were derived in [7], [8] and [9] respectively. Another formalism
used for for studying discrimination of quantum channels is based on process POVM
(PPOVM) [10]. It was applied to discrimination of unitary channels in [11,12].

Discrimination of unknown unitary channels was first studied in the work [13] in both
minimum-error and unambiguous setups. The authors calculated that the probability
of successful minimum-error discrimination between two random qubit unitary channels
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equals 7/8 and they made use of the input state |ψ−〉 = 1√
2

(|01〉 − |10〉). The authors

of [14] proved that the probability 7/8 is optimal in the sense that it cannot be improved
by the use of any (even adaptive) discrimination strategy for the qubit case. Recent
results concerning discrimination of unknown unitary channels can be found in [15].

Minimum error discrimination of quantum measurements was studied in single-shot [16]
and multiple-shot [17] regimes. Asymmetric discrimination of von Neumann measure-
ments was studied in [18] The advantage of using entangled stated for single-shot dis-
crimination between qubit measurements was experimentally shown in [19]. Application
of process POVMs for discrimination of quantum measurements can be found in [20,21]

In this work we study discrimination of unknown von Neumann measurements in
symmetric and asymmetric scenarios. We begin with preliminaries in Section 2 and
detailed setups for symmetric and asymmetric discrimination of quantum measurements
will be presented therein. Next, we will study the problem when one of the measurements
is given without classical description and we want to verify if the other measurement is
a copy of the same measurements or it is some other one. This problem will be studied
in Section 3. Later, we will assume that one copy of a measurement is given with its
classical description and we want to know whether the other measurement is a copy of
the same measurement. This problem will be studied in Section 4. We will conclude in
Section 5.

2. Preliminaries

Let X , Y and Z be Hilbert spaces where dim(X ) = dim(Y) = d, dim(Z) = d2. Let
L(X ) be a set of linear operators acting from X to X . Let U(X ) denote the set of
unitary operators. Let D(X ) denote the set of quantum states, C(X ) denote the set of
quantum channels and T (X ) denote the set of quantum operations. For U ∈ U(X ),
a unitary channel will be denoted ΦU (·) := U · U †. We will also utilize two special
quantum channels. The first one is the depolarizing channel, which transforms every
quantum state into the maximally mixed state. Formally, it is defined for X ∈ L(X ) as

Φ∗(X) := Tr(X)
1l

dim(X )
.

The second one is the dephasing channel defined as

∆(X) :=
∑
i

|i〉〈i|X|i〉〈i|.

A quantum measurement is defined as a collection of positive semidefinite operator
P = {E1, . . . , Em} which satisfy

∑m
i=1 = 1l, where 1l is the identity operator. Operators

Ei are called effects. When a quantum state ρ is measured by the measurement P, then
we obtain a label i with probability p(i) = tr (Eiρ) and the state ρ ceases to exist. We
will be particularly interested in von Neumann measurements, which effects are of the
form PU = {|u1〉〈u1|, . . . , |ud〉〈ud|}, where |ui〉 = U |i〉 is the i-th column of the unitary
matrix U . Every quantum measurement can be associated with a quantum channel

(1) P(ρ) =
∑
i

|i〉〈i| tr(Eiρ),
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which outputs a diagonal matrix where i-th entry on the diagonal corresponds to the
probability of obtaining i-th label.

The Choi-Jamio lkowski representation of quantum operation Ψ ∈ T (X ) is defined as
J (Ψ) := (Ψ⊗ 1lX ) (|1l〉〉〈〈1l|), where 1lX is the identity channel on the space L(X ) and
|X〉〉 denotes the (lexicographical) vectorization of the operator X.

The diamond norm of a quantum operation Ψ ∈ T (X ) is defined as

(2) ‖Ψ‖� := max
X:‖X‖1=1

‖(Ψ⊗ 1lX ) (X)‖1 ,

where 1lX is, as previously, the identity channel on the space L(X ). We will often use
the bounds on the diamond norm [22,23]

(3)
1

d
‖J(Ψ)‖1 ≤ ‖Ψ‖� ≤ ‖Tr1 |J(Ψ)|‖.

In this work we will focus on two approaches to discrimination of quantum measure-
ments, which are symmetric and asymmetric discrimination.

2.1. Symmetric discrimination. The goal of symmetric discrimination is to maximize
the probability of correct discrimination. It is also known as minimum-error discrimi-
nation. The schematic representation of symmetric discrimination of quantum measure-
ments is depicted in Figure 1.

X P0 •

Y P? •

Z Ω decision

|ψ〉

Figure 1. Entanglement-assisted discrimination of von Neumann mea-
surements

There are two black boxes. In the first black box there is a measurement P0. In the
second box there is a measurement P?, which can either the same measurement P0, or
some other measurement, P1. In other words P? ∈ {P0,P1}. As the input state to the
discrimination procedure we take a state |ψ〉 ∈ X ⊗Y ⊗Z and we will write ψ := |ψ〉〈ψ|
for the sake of simplicity. The measurement in the first black box acts on the register
X and the second black box acts on the register Y. Basing on the outcomes of both
measurements in the black boxes, we prepare a final measurement on the register Z.
Having the output of the final register, we make a decision whether P? = P0 or P? = P1.

To calculate the probability of the successful discrimination between quantum mea-
surements, we will make use of the Holevo-Helstrom theorem. It states that the op-
timal probability of successful discrimination between any quantum channels Ψ0 and
Ψ1 ∈ C(X ) is upper-bounded by

(4) psucc ≤
1

2
+

1

4
‖Ψ0 −Ψ1‖�

and this bound can be saturated. This optimal probability of successful discrimination
will be denoted pHsucc := 1

2 + 1
4 ‖Ψ0 −Ψ1‖�.
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2.2. Asymmetric discrimination. Asymmetric discrimination is based on hypothesis
testing. The null hypothesis H0 corresponds to the situation when P? = P0. The
converse situation, P? = P1 corresponds to alternative hypothesis H1. The scheme
of asymmetric discrimination is as follows. We begin with preparing an input state
|ψ〉 ∈ L(X ⊗Y ⊗Z) and apply P0 and P? on registers X and Y respectively. Therefore,
in the case when P? = P0, we obtain as the output (P0 ⊗ P0 ⊗ 1l) (ψ) and if P? = P1,
then the output state yields (P0 ⊗ P1 ⊗ 1l) (ψ). Having the output states, we prepare a
binary measurement {Ω, 1l− Ω}, where the effect Ω accepts the null hypothesis and the
effect 1l− Ω accepts the alternative hypothesis.

The type I error (false positive) happens when we reject the correct null hypothesis.
When the input state ψ and measurement Ω are fixed, then the probability of making
the type I error is given by the expression

(5) p
(ψ,Ω)
I := Tr ((1l− Ω) (P0 ⊗ P0 ⊗ 1l) (ψ)) = 1− Tr (Ω (P0 ⊗ P0 ⊗ 1l) (ψ)) .

The optimized probability of the type I error yields

(6) pI := min
ψ,Ω

p
(ψ,Ω)
I

The probability of making the type II error (also known as false negative) for fixed input
state and measurement equals

(7) p
(ψ,Ω)
II = Tr (Ω (P0 ⊗ P1 ⊗ 1l) (ψ))

and corresponds to the situation when we accept the null hypothesis when the alternative
one was correct. The optimized probability of making the type II error yields

(8) pII := min
ψ,Ω

p
(ψ,Ω)
II .

For both symmetric and asymmetric schemes we will study two cases. First we will
assume that both measurements are unknown. Later, we will assume that we know the
description of the reference measurement and the other measurement is unknown. We
will be also interested whether the additional register is necessary for optimal discrimi-
nation. The summary of results is presented in the following table.

pHsucc pHerr pI pII additional register

both unknown 1
2 + 1

2d
1
2 −

1
2d 0 1− 1

d no

one fixed 1− 1
2d

1
2d 0 1

d yes

Table 1. Summary of for symmetric and asymmetric discrimination of
unknown von Neumann measurements

3. Discrimination of both unknown von Neumann measurements

In this section we will study a situation when we are given a von Neumann measure-
ment P0 but no classical description of it. This measurement will be our reference. We
also have another von Neumann measurement P1, which can be the same as the reference
one, but it does not have to. In this section we will study the problem how to verify
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whether the second measurement is the same as the first one or not. Similar problem of
discrimination of both unknown unitary channels was recently studied in [15].

3.1. Symmetric discrimination. We will be calculating the success probability for the
discrimination of von Neumann measurements in the scenario depicted in Fig. 1. There-
fore we will be actually discriminating between P0⊗P0 and P0⊗P1 in the entanglement-
assisted scenario. Thus, in order to use Holevo-Helstrom theorem we will need to cal-
culate the value of the diamond norm. As we do not have classical description of either
P0 or P1, we will assume that both measurement are Haar-random, that is we will be
discriminating between

∫
PU⊗PUdU and

∫
PU⊗PV dUdV . The probability of successful

discrimination is formulated as the following theorem.

Theorem 1. Let P0 be a reference von Neumann measurement of dimension d given
without classical description. Let P1 be another von Neumann measurement of the
same dimension, also given without classical description. The optimal probability of
correct verification if P1 is the same as the reference channel in the scheme described in
Subsection 2.1 equals

(9) pHsucc =
1

2
+

1

2d
.

Remark 1. The above theorem is a direct application of Holevo-Helstrom Theorem (see
Eq. (4)) for discrimination between channels

∫
PU ⊗ PUdU and

∫
PU ⊗ PV dUdV , that

is

(10) pHsucc =
1

2
+

1

4

∥∥∥∥∫ PU ⊗ PUdU − ∫ PU ⊗ PV dUdV ∥∥∥∥
�

=
1

2
+

1

2d
.

Proof. Let U ∈ U(X ), V ∈ U(Y) be unitary operators and dim(X ) = dim(Y) = d. The
probability of successful discrimination is given by the Holevo-Helstrom theorem. To
calculate this probability (Eq. (4)), we need to calculate the diamond norm distance
between the averaged channels

(11)

∥∥∥∥∫ PU ⊗ PUdU − ∫ PU ⊗ PV dUdV ∥∥∥∥
�
.

As the von Neumann measurement PU can be seen as ∆ΦU† , where ∆ is a dephasing
channel defined in Eq. (2), we will actually be discriminating between

(12)

∫
(∆⊗∆)(ΦU† ⊗ ΦU†)dU and

∫
(∆⊗∆)(ΦU† ⊗ ΦV †)dUdV.

Using [24,25] we calculate the Choi-Jamio lkowski representations of averaged unitary
channels

J

(∫
ΦU ⊗ ΦUdU

)
=

1

d2 − 1
(1l⊗ 1l + S ⊗ S)− 1

d(d2 − 1)
(S ⊗ 1l + 1l⊗ S) ,

J

(∫
ΦU ⊗ ΦV dUdV

)
=

1

d2
1l⊗ 1l,

(13)

where, unless said otherwise, S is the Swap matrix of dimension d2 and identity matrices
1l-s are also of dimension d2.
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Using the above, we can calculate the Choi-Jamio lkowski representations of the aver-
aged measurements, that is

(14) J

(∫
PU ⊗ PUdU

)
=

1

d2 − 1

(
1l⊗

(
1l− 1

d
S

)
+ T ⊗

(
S − 1

d
1l

))
where T := ∆(S), and

(15) J

(∫
PU ⊗ PV dUdV

)
=

1

d2
1l⊗ 1l.

For later convenience, we introduce J as a difference of Choi matrices of both ran-
domized measurements, that is

J := J

(∫
PU ⊗ PUdU

)
− J

(∫
PU ⊗ PV dUdV

)
=

1

d2 − 1

(
1l⊗

(
1

d2
1l− 1

d
S

)
+ T ⊗

(
S − 1

d
1l

))
.

(16)

The remaining part of the proof goes as follows. We will first calculate the upper
bound on the diamond norm ‖

∫
PU ⊗ PUdU −

∫
PU ⊗ PV dUdV ‖� ≤ ‖TrX ,Y |J |‖ from

Eq. (3). Later, we will show that this inequality is saturated by Proposition 3 in [22].
Now we will focus on the upper bound. To calculate the upper bound we first need

to find |J | =
√
J†J . From Lemma 1 in Appendix A, taking W := (2T − 1l)⊗ S it holds

that (WJ)2 = J2, and this gives a polar decomposition of J .
To calculate the upper bound for the diamond norm from Eq. (3) we need to calculate

‖TrX ,Y |J |‖ = ‖TrX ,YWJ‖. Hence we calculate

TrX ,Y(WJ) =
1

d2 − 1
TrX ,Y

(
1

d
1l⊗ 1l− 1

d2
1l⊗ S +

d− 2

d
T ⊗ 1l− d− 2

d2
T ⊗ S

)
=

1

d2 − 1

(
d2

d
1l− d2

d2
S +

d(d− 2)

d
1l− d(d− 2)

d2
S

)
=

1

d2 − 1

(
(2d− 2)1l− 2d− 2

d
S

)
=

2

d+ 1

(
1l− 1

d
S

)(17)

and eventually we have

(18) ‖TrX ,Y |J |‖ =

∥∥∥∥ 2

d+ 1

(
1l− 1

d
S

)∥∥∥∥ =
2

d+ 1

∥∥∥∥1l− 1

d
S

∥∥∥∥ =
2

d
.

Now we proceed to proving that the upper bound is saturated. By Proposition 3
in [22] we need to check whether there exist a vector |a〉 and a unitary matrix W such
that

(i) 〈a|TrX ,Y
√
J†J |a〉 =

∥∥∥TrX ,Y
√
J†J

∥∥∥
(ii) (1l⊗ |a〉〈a|)W = W (1l⊗ |a〉〈a|)
(iii) W is the angular part of some polar decomposition of J (i.e. J = WP for some

positive semidefinite P )

As the matrix W we take W := (2T − 1l)⊗ S and as the vector |a〉 we take some vector
1√
2

(|ij〉 − |ji〉) ∈ Z, where i > j and dim(Z) = d2. The condition (ii) translates to
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(1l⊗ |a〉〈a|)S⊗S = S⊗S (1l⊗ |a〉〈a|) hence it suffices to note that |a〉〈a|S = S|a〉〈a|. The
condition (iii) follows directly.

Therefore

(19)

∥∥∥∥∫ PU ⊗ PUdU − ∫ PU ⊗ PV dUdV ∥∥∥∥
�

=
2

d

and eventually

(20) pHsucc =
1

2
+

1

2d
.

�

3.2. Asymmetric discrimination. In the asymmetric discrimination we will consider
two types of errors separately. We would like to verify whether measurements in both
black boxes are the same (which corresponds to H0 hypothesis) or they are different
(which corresponds to H1 hypothesis). Formally, when the measurement in the first
black box, P0, is unknown, we say that P0 =

∫
PUdU . The measurement in the second

black box can be either the same as in the first black box (P? = P0) or it can be some
other measurement, that is P? =

∫
PV dV . When performing asymmetric discrimina-

tion, we prepare an input state |ψ〉 ∈ X ⊗ Y ⊗ Z. If in both black boxes there were

the same measurements, then the output state yields ρ
(ψ)
0 =

∫
(PU ⊗ PU ⊗ 1lZ) (ψ)dU.

If the measurements in the black boxes were different, when the output state is ρ
(ψ)
1 =∫

(PU ⊗ PV ⊗ 1lZ) (ψ)dUdV. Next, we measure the output state by a binary measure-
ment {Ω, 1l − Ω}. We will focus on the case when he type I error cannot occur. The
optimal probability of the type II error is formulated as the following theorem.

Theorem 2. Let P0 be a reference von Neumann measurement of dimension d given
without classical description. Let P1 be another von Neumann measurement of the same
dimension, also given without classical description. Consider the hypotheses testing
problem described in Subsection 2.2. Let H0 hypothesis state that P? = P0 and let the
alternative H1 hypothesis state that P? = P1. If no false positive error can occur, then
the optimal probability of false negative error yields

(21) pII = 1− 1

d
.

Moreover, no additional register is needed to obtain this value.

Proof. As the input state to the discrimination procedure we take some state |ψ〉 ∈ X⊗Y.
Note that we assumed that this state is only on two registers. In this proof we will
calculate the probability of the type II error assuming that the register Z is trivial.
Later, we will prove that this gives the optimal probability and the additional register
is not needed.

If both measurements are the same, then the output state will be

(22) ρ
(ψ)
0 =

∫
(PU ⊗ PU ) (ψ)dU.

If the measurement in the black boxes are different, then the output state will be

(23) ρ
(ψ)
1 =

∫
(PU ⊗ PV ) (ψ)dUdV.



8 DISCRIMINATION AND CERTIFICATION OF UNKNOWN QUANTUM MEASUREMENTS

We begin with calculating
∫

(PU ⊗ PU ) (ψ)dU by the use of formula for recovering
the action of a quantum channel given its Choi matrix. Using the formula for the Choi
matrix from Eq. (14) and using the notation T := ∆(S) we calculate

ρ
(ψ)
0 = TrZ

(
J

(∫
PU ⊗ PUdU

)(
1l⊗ ψ>

))
=

1

d(d2 − 1)

((
d− tr

(
Sψ>

))
1l +

(
d tr

(
Sψ>

)
− 1
)
T
)
.

(24)

Let us take the input state to be antisymmetric, that is it satisfies tr
(
Sψ>

)
= −1.

We calculate

ρ
(ψ)
0 =

1

d(d2 − 1)
((d+ 1) 1l− (d+ 1)T ) =

1

d(d− 1)
(1l− T ) .(25)

By similar calculation, using the antisymmetric input state we have

ρ
(ψ)
1 = TrZ

(
J

(∫
PU ⊗ PV dU

)(
1l⊗ ψ>

))
= TrZ

((
1

d2
1l⊗ 1l

)(
1l⊗ ψ>

))
=

1

d2
TrZ

(
1l⊗ ψ>

)
=

1

d2
1l.

(26)

As the measurement effect we take Ω := 1l− T . Hence

p
(ψ,Ω)
I = 1− tr

(
Ωρ

(ψ)
0

)
= 1− 1

d(d− 1)
tr ((1l− T ) (1l− T )) = 0,(27)

and

p
(ψ,Ω)
II = tr

(
Ωρ

(ψ)
1

)
=

1

d2
tr (1l− T ) =

d(d− 1)

d2
= 1− 1

d
.(28)

From Appendix B we know that the probability of erroneous discrimination is the
symmetric scheme (which equals 1− pHsucc) is never bigger than the arithmetic mean of
probabilities of the type I and type II errors. As

(29)
1

2

(
p

(ψ,Ω)
I + p

(ψ,Ω)
II

)
=

1

2
− 1

2d
,

then we conclude that our value of p
(ψ,Ω)
II = 1− 1

d is optimal and hence pII = p
(ψ,Ω)
II .

Finally, note the optimal value pII can be achieved for the input state |ψ〉 ∈ X ⊗ Y,
that is when the register Z is trivial. Hence, the additional register is not needed for
asymmetric discrimination in this case. �

4. Discrimination between a fixed and unknown von Neumann
measurements

In this section we assume that instead of the unknown reference measurement from
the previous section, we are given P0 as a fixed von Neumann measurement PU . We
will begin with studying symmetric discrimination and later proceed to studying the
asymmetric discrimination scheme.
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4.1. Symmetric discrimination. Now we focus on the situation when we want to dis-
tinguish between a fixed von Neumann measurement PU and a Haar-random measure-
ment

∫
PV dV . The probability of successful discrimination is formulated as a theorem.

Theorem 3. Let P0 = PU be a reference von Neumann measurement of dimension d.
Let P1 be another von Neumann measurement of the same dimension, but given without
classical description. The optimal probability of correct verification whether P1 = P0 or
P1 6= P0 in the scheme described in Subsection 2.1 equals

(30) pHsucc = 1− 1

2d
.

Proof. Without loss of generality we can take U = 1l. To calculate the bound from
Holevo-Helstrom theorem (4), we want to calculate the diamond norm distance between
quantum measurements

(31)

∥∥∥∥P1l ⊗ P1l − P1l ⊗
∫
PV dV

∥∥∥∥
�
.

Using properties of the diamond norm [23] we calculate∥∥∥∥P1l ⊗ P1l − P1l ⊗
∫
PV dV

∥∥∥∥
�

=

∥∥∥∥P1l ⊗
(
P1l −

∫
PV dV

)∥∥∥∥
�

= ‖P1l‖�

∥∥∥∥P1l −
∫
PV dV

∥∥∥∥
�

=

∥∥∥∥P1l −
∫
PV dV

∥∥∥∥
�
.

(32)

To do this, we use the fact that PV = ∆ΦV † . Moreover, we know that J(Φ1l) = |1l〉〉〈〈1l|
and J(Φ?) = 1l/d, where Φ? is the depolarizing channel defined in Eq. (2). Therefore,
calculating directly both lower and upper bounds for the diamond norm from Eq. (3),
we obtain

(33)

∥∥∥∥P1l −
∫
PV dV

∥∥∥∥
�

= 2− 2

d
.

Finally

(34) pHsucc =
1

2
+

1

4

(
2− 2

d

)
= 1− 1

2d
.

�

4.2. Asymmetric discrimination. In this subsection we will focus on asymmetric dis-
crimination between a fixed von Neumann measurement PU and a Haar-random mea-
surement PV . We will be interested in the scenario when the false positive error cannot
occur. The optimized probability of the false negative error is formulated as a theorem.

Theorem 4. Let P0 = PU be a fixed von Neumann measurement and P1 be some other
von Neumann measurement given without classical description. Let the H0 hypothesis
correspond to the case when P? = P0 and H1 hypothesis correspond to the case when
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P? = P1. Consider the discrimination scheme described in Subsection 2.2. If no false
positive error can occur, then the optimal probability of false negative error yields

(35) pII =
1

d
.

Proof. This proof goes similar as the proof of Theorem 1. We will choose a fixed input
state on only two registers. We will also fix the final measurement and calculate the
probabilities of making the false positive and false negative errors. Later, from inequality
between errors in symmetric and asymmetric schemes in Appendix B we will see that
the calculated pII is the optimal one.

As the input state we take ψ := 1
d |1l〉〉〈〈1l|. We calculate the output states

ρ
(ψ)
0 := (PU ⊗ 1l) (ψ) =

1

d
(PU ⊗ 1l) (|1l〉〉〈〈1l|) =

1

d

∑
i

|i〉〈i| ⊗ |ui〉〈ui|>(36)

and

ρ
(ψ)
1 :=

∫
(PV ⊗ 1l) (ψ)dV =

1

d

∫
(PV ⊗ 1l) (|1l〉〉〈〈1l|)dV

=
1

d

∫ ∑
i

|i〉〈i| ⊗ |vi〉〈vi|>dV =
1

d

∑
i

|i〉〈i| ⊗
∫
|vi〉〈vi|>dV =

1

d2
1l⊗ 1l.

(37)

Recall that the measurement effect Ω correspond to H0 hypothesis and 1l − Ω corre-
spond to H1 hypothesis. Hence we have probabilities of false positive and false negative
errors (for given input state) equal

(38) p
(ψ,Ω)
I = 1− tr

(
Ωρ

(ψ)
0

)
, p

(ψ,Ω)
II = tr

(
Ωρ

(ψ)
1

)
.

Without loss of generality we can consider Ω in the block-diagonal form, ie.

(39) Ω :=
∑
i

|i〉〈i| ⊗ Ω>i .

As the unitary matrix U is known, we can use it to construct the final measurement.
Let

(40) Ωi := |ui〉〈ui|

for every i = 1, . . . , d.
Then

tr
(

Ωρ
(ψ)
0

)
= tr

(∑
i

|i〉〈i| ⊗ |ui〉〈ui|>
)1

d

∑
j

|j〉〈j| ⊗ |uj〉〈uj |>


=
1

d

∑
i

tr (|ui〉〈ui|ui〉〈ui|) =
1

d

∑
i

|〈ui|ui〉|2 = 1

(41)

and hence

(42) p
(ψ,Ω)
I = 1− tr

(
Ωρ

(ψ)
0

)
= 0.
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Eventually

p
(ψ,Ω)
II = tr

(
Ωρ

(ψ)
1

)
= tr

((∑
i

|i〉〈i| ⊗ |ui〉〈ui|>
)(

1

d2
1l⊗ 1l

))

=
1

d2

∑
i

tr (|ui〉〈ui|) =
1

d
.

(43)

It remains to explain why p
(ψ,Ω)
II = pII. Note that the arithmetic mean of probabilities

of both types of errors equals 1
2d which is equal to the probability of erroneous discrim-

ination in the symmetric scheme (see Theorem 3). From the inequality between errors
in the symmetric and asymmetric schemes in Appendix B we conclude that pII = 1

d .
�

5. Conclusion

We were studying the problem whether the given von Neumann measurement is the
same as the reference one. We were considering the situation when the reference measure-
ment is given without classical description and when its classical description is known.
Both situations were studied in the symmetric and asymmetric scenarios. We proved
that in both cases one can achieve the probability of false positive error equal zero
and we calculated optimal probabilities of false negative errors. We also calculated the
probabilities of successful discrimination in the symmetric discrimination scheme.
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Appendix A. Lemma 1

Lemma 1. Let J be as defined in Eq. (16), T := ∆(S) and W := (2T − 1l)⊗ S, where
S is the swap matrix of dimension d2. Then J2 = (WJ)2.

Proof. As

(44) J2 =

(
1

d2 − 1

)2( 1

d2
1l⊗ 1l− 1

d
1l⊗ S + T ⊗ S − 1

d
T ⊗ 1l

)2

,
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we calculate

(
1

d2
1l⊗ 1l− 1

d
1l⊗ S + T ⊗ S − 1

d
T ⊗ 1l

)2

=
1

d4
1l⊗ 1l− 1

d3
1l⊗ S +

1

d2
T ⊗ S − 1

d3
T ⊗ 1l

− 1

d3
1l⊗ S +

1

d2
1l⊗ 1l− 1

d
T ⊗ 1l +

1

d2
T ⊗ S

+
1

d2
T ⊗ S − 1

d
T ⊗ 1l + T ⊗ 1l− 1

d
T ⊗ S

− 1

d3
T ⊗ 1l +

1

d2
T ⊗ S − 1

d
T ⊗ S +

1

d2
T ⊗ 1l

=
d2 + 1

d4
1l⊗ 1l− 2

d3
1l⊗ S +

(
1 +

1

d2
− 2

d
− 2

d2

)
T ⊗ 1l +

(
4

d2
− 2

d

)
T ⊗ S

=
d2 + 1

d4
1l⊗ 1l− 2

d3
1l⊗ S +

(d2 + 1)(d− 2)

d3
T ⊗ 1l +

4− 2d

d2
T ⊗ S,

(45)

and eventually
(46)

J2 =

(
1

d2 − 1

)2(d2 + 1

d4
1l⊗ 1l− 2

d3
1l⊗ S +

(d2 + 1)(d− 2)

d3
T ⊗ 1l +

4− 2d

d2
T ⊗ S

)
.

On the other hand

(47) WJ = (2T ⊗ S − 1l⊗ S)
1

d2 − 1

(
1

d2
1l⊗ 1l− 1

d
1l⊗ S + T ⊗ S − 1

d
T ⊗ 1l

)
.

Hence we calculate

(2T ⊗ S − 1l⊗ S)

(
1

d2
1l⊗ 1l− 1

d
1l⊗ S + T ⊗ S − 1

d
T ⊗ 1l

)
=

2

d2
T ⊗ S − 2

d
T ⊗ 1l + 2T ⊗ 1l− 2

d
T ⊗ S

− 1

d2
1l⊗ S +

1

d
1l⊗ 1l− T ⊗ 1l +

1

d
T ⊗ S

=
1

d
1l⊗ 1l− 1

d2
1l⊗ S +

d− 2

d
T ⊗ 1l− d− 2

d2
T ⊗ S.

(48)
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and thus (
1

d
1l⊗ 1l− 1

d2
1l⊗ S +

d− 2

d
T ⊗ 1l− d− 2

d2
T ⊗ S

)2

=
1

d2
1l⊗ 1l− 1

d3
1l⊗ S +

d− 2

d2
T ⊗ 1l− d− 2

d3
T ⊗ S

− 1

d3
1l⊗ S +

1

d4
1l⊗ 1l− d− 2

d3
T ⊗ S +

d− 2

d4
T ⊗ 1l

+
d− 2

d2
T ⊗ 1l− d− 2

d3
T ⊗ S +

(d− 2)2

d2
T ⊗ 1l− (d− 2)2

d3
T ⊗ S

− d− 2

d3
T ⊗ S +

d− 2

d4
T ⊗ 1l− (d− 2)2

d3
T ⊗ S +

(d− 2)2

d4
T ⊗ 1l

=
d2 + 1

d4
1l⊗ 1l− 2

d3
1l⊗ S +

(d2 + 1)(d− 2)

d3
T ⊗ 1l +

4− 2d

d2
T ⊗ S.

(49)

Eventually
(50)

(WJ)2 =

(
1

d2 − 1

)2(d2 + 1

d4
1l⊗ 1l− 2

d3
1l⊗ S +

(d2 + 1)(d− 2)

d3
T ⊗ 1l +

4− 2d

d2
T ⊗ S

)
and hence (WJ)2 = J2. �

Appendix B. Inequality between errors

We will show that

(51) pHe ≤
1

2
(p1 + p2),

where pHe = 1− pHsucc is the probability of error from the Holevo-Helstrom Theorem.
Let us recall that from Holevo-Helstrom Theorem we have

(52)
1

2
Tr(Ω0ρ0) +

1

2
Tr(Ω1ρ1) ≤ 1− pHe ,

hence

(53) pHe ≤ 1− 1

2
(Tr(Ω0ρ0) + Tr(Ω1ρ1)) .

On the other hand we know that

Tr(Ω0ρ0) + Tr(Ω1ρ0) = 1

Tr(Ω0ρ1) + Tr(Ω1ρ1) = 1
(54)

and hence

(55) Tr(Ω0ρ0) + Tr(Ω1ρ1) = 2− (p1 + p2).

Therefore

pHe ≤ 1− 1

2
(Tr(Ω0ρ0) + Tr(Ω1ρ1)) = 1− 1

2
(2− (p1 + p2))

=
1

2
(p1 + p2).

(56)
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