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ABSTRACT2

The widespread adoption of the Internet of Things (IoT) partly depends on the successful design3
and deployment of IoT nodes that can operate for several years without any service outage and4
the need to replace their energy storage systems (e.g., battery, capacitor, or supercapacitor)5
when all the stored energy is depleted or when the cycle life of the Energy Storage Systems (ESS)6
is reached. Replacing batteries in the case of large-scale IoT networks and nodes located in7
places that are hard to reach is very challenging and costly, requiring the design of IoT nodes that8
can operate for several years without the need for human intervention. One such example is the9
deployment of IoT nodes in large agricultural fields (for soil or crop monitoring) or a long-distance10
pipeline (for pipeline monitoring). This paper investigates the practical implications of imposing11
energy-saving thresholds on the energy performance metrics of green IoT nodes. We propose12
an energy packet-based model for the evaluation of the energy performance of a green IoT13
node with the possibility of switching the node to energy saving regimes on the fly when the14
energy content of the ESS reaches defined thresholds. Configuring single or multiple thresholds15
improves the energy performance of the node significantly (e.g., increases lifetime of the node,16
reduces probability of service outage and energy wastage), and the value of the threshold(s)17
should be carefully chosen.18

Keywords: Energy performance, green IoT, energy packets, energy-efficiency, energy thresholds, time-dependent analysis.19

1 INTRODUCTION

The widespread adoption of the Internet of Things (IoT) partly depends on the successful deployment of IoT20
nodes that can operate for several years without the need for battery replacement. In most IoT deployments,21
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the IoT sensor/actuator nodes are powered by non-rechargeable batteries. A significant drawback of using22
non-rechargeable batteries is that the lifetime of the IoT network is limited by the finite energy capacity23
of their batteries Ku et al. (2015). Since energy depleted from the battery is not being replenished, the24
energy stored in the battery is eventually depleted, requiring the replacement of batteries, which is a costly25
operation and also very challenging in large-scale IoT networks and nodes located in locations that are hard26
to reach. For example, it is very challenging and costly to replace the batteries of IoT nodes deployed in27
large agricultural fields (for soil or crop monitoring) or a long-distance pipeline (for pipeline monitoring).28
Thus, there is a severe need to design and deploy IoT networks in such a way that the nodes can operate for29
several years before requiring battery replacements.30

There is a growing interest in the adoption of green IoT design as a viable strategy to increase the31
lifetime of IoT nodes (the time required to deplete all the energy stored in the energy storage system of an32
IoT node), reduce the carbon footprint of IoT networks, and ensure environmental sustainability of IoT33
deployments. Green IoT Al-Ansi et al. (2021); Sadatdiynov et al. (2023); Alsharif et al. (2023a) is an IoT34
design framework that seeks to minimise the energy consumption from the manufacturing and operation of35
IoT systems with the aim of minimising the carbon footprint or pollutants (e.g., CO2, electronic wastes36
and other toxic substances) produced from the manufacturing, deployment, and operation of IoT systems37
including other IoT related infrastructures (e.g., edge computing, core networks, cloud computing, and38
operation, provisioning, and maintenance systems).39

Green IoT design involves the development of strategies to minimise energy consumption and also the40
use of energy harvesters to harvest energy from ambient renewable energy sources to power IoT systems.41
Some green IoT design mechanisms to minimise energy consumption include duty cycling, reduction of42
packet size, transceiver optimisation, energy-ware routing, energy-efficient sensing (e.g., adaptive sensing),43
reduction of protocol overhead, voltage & frequency control Abdul-Qawy et al. (2020); Alsharif et al.44
(2023b) energy-efficient hardware and software design Albreem et al. (2021); Alsharif et al. (2023b), green45
IoT communication technologies (BLE, RFID, NFC, Zigbee, LoRa, Sigfox), green IoT architecture design46
(green cloud, fog, and virtualisation) Varjovi and Babaie (2020), sustainable materials, and integration of47
renewable energy into IoT systems. Also, the energy consumption of the IoT node can be reduced on the48
fly during its operation by throttling the speed of the processor clock, decreasing the operating voltage, or49
decreasing the transmission power(and the number of transmission operations).50

The challenge in designing IoT nodes that can operate for several years without the need for battery51
replacement is the fact that the availability of ambient energy sources (e.g., light, wind, RF, heat, vibration,52
etc.) is random and sporadic, and the energy consumed by the nodes varies slightly. An approach for53
dimensioning Green IoT nodes without getting into the technical details of the energy harvesters, IoT nodes,54
and energy storage systems is to discretise energy into energy packets and apply well-known stochastic55
models such as Markov models. More details about the energy packet concept can be found in Gelenbe56
(2011, 2012); Kuaban et al. (2023a), and we have also presented more details about it in the next section,57
within the context of our proposed modelling framework.58

A few studies (e.g.,Gautam and Dharmaraja (2018); Jones et al. (2011); Tunc and Akar (2017); Miao59
et al. (2023)) to analyse the energy performance of green IoT networks with the possibility of reducing the60
energy consumption of the node on the fly when the energy content of the ESS goes below-defined energy61
thresholds. In the analysis presented in most of these works, a single energy threshold is considered. Most62
of these works mostly focus on performance metrics such as the lifetime of the node. However, there are63
other performance metrics, such as service outage probability, the mean energy content of the ESS, and64
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the energy wastage probability. There is also a need for more extensive investigation of the impact of the65
energy threshold on the energy performance metrics.66

The main goal of this paper is to investigate the practical implications of imposing energy-saving67
thresholds on the energy performance metrics of green IoT nodes. We conduct steady-state and time-68
dependent analysis of the energy performance of a green IoT node, considering the impact of switching the69
node to more energy-efficient regimes when the defined threshold of the energy content of their ESS is70
reached. The main contributions of the paper include the following:71

1. We propose an energy packet-based model for the evaluation of the energy performance of a green IoT72
node with the possibility of switching the node to more efficient regimes on the fly when the energy73
content of the ESS reaches defined thresholds.74

2. We present an approach to determine the size of an energy packet or quantisation step that can be used75
to discretise or quantise the energy flows (energy harvested, stored, and consumed) into energy packets.76
In this way, energy is treated as the flow of discrete energy units (the so-called energy packets) rather77
than continuous flows.78

3. We propose a multi-threshold model of the energy storage system and evaluated the impact of the value79
and number of thresholds on the energy performance metrics such as the service outage probability80
(the probability that all the energy packets stored in the ESS are depleted), energy wastage probability81
(the probability that ESS is full and energy packets that arrive after this time instant are lost or wasted),82
the mean number of energy packets in the ESS, and the lifetime of the ESS.83

2 MODEL DESCRIPTION

In this section, we describe the energy model of a self-powered green IoT node considered in this paper. We84
also describe the energy packet model of the node and then use it to describe the energy threshold-based85
model of the energy storage system, which is the main focus of this paper.86

2.1 Energy model of the self-powered IoT node87

Consider a typical self-powered IoT node that consists of an IoT sensor node, an energy harvesting88
system, and an energy storage system, as shown in Fig. 1. Energy is harvested from ambient or external89
sources (e.g., solar, artificial light, Radio Frequency, and vibration) to power the sensor node directly.90
Any residual energy is stored in an energy storage system. The stored energy is used to power the sensor91
node when the energy harvester is not able to generate enough energy to meet the energy needs of the92
node due to unfavourable environmental conditions (e.g., during the night in the case of solar energy93
harvesters). When the sensor node is not performing sensing, computing, or processing operations, it94
is forced into sleep mode, where it consumes negligible amounts of energy. Fig. 2 shows a snapshot of95
the power profile of an IoT node consisting of two modes: sleep mode (when it is neither performing96
sensing, computing, or communication functions) and active mode (when it wakes up to perform sensing,97
computing, or communication operations). From the power profile, the average power consumption of the98
node is99

Pnode = D · Pact + (1−D) · Psleep (1)

where,100

D =
tact

tact + tsleep
(2)
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Figure 1. The architecture of a self-powered Green IoT sensor node

tact is the time spent in the active mode and tsleep is the time spent in the sleep mode. Pact is the power101
consumption of the node in the active mode, and Psleep is the power consumption of the node in the sleep102
mode. The energy consumed during the active mode is the sum of the energy consumed by the sensing,103
computing, communication units and other auxiliary electronics components of the node during the active104
period.105

The power profile in Fig. 2 is presented to illustrate the characteristics of the IoT energy consumption106
model, which forms the basis of our energy packetisation or quantisation model in the following subsection.107
The power profile is obtained using a laboratory testbed that consists of two IoT nodes positioned 2 m108
apart along a high-pressure plastic pipe measuring 12 m in length and with a diameter of 25 mm. In109
order to optimise or minimise the energy consumption of the IoT nodes, the nodes are configured to110
perform distributed computing with Kalman filtering (by sharing the computing load), adaptive sensing (by111
using an energy-efficient but less accurate accelerometer sensor and an energy-hungry but more accurate112
accelerometer sensor), and duty cycling (forcing the node to enter sleep modes when it is idle).113

Performing energy planning of self-powered IoT nodes requires an estimate of the energy demand, energy114
generation, and storage capacity to ensure a low probability of service outage and a long lifetime for the115
node. From the characterisation of the energy harvesting system (e.g., solar cells, piezoelectric, RF, or116
thermoelectric energy harvester), the power profile can be obtained. An empirical power profile of a solar117
energy harvester for an IoT node is shown in Kuzman et al. (2019), which consists of active periods of118
solar power generation (when there is enough solar radiation) and a period of no solar power generation119
(when there is insufficient solar radiation notably during the night). From the energy consumption and120
generation profile, the mean energy produced and consumed can be estimated. The mean energy generated121
and consumed can be used to determine the number of energy packets produced and consumed per unit of122
time, as discussed in the next section.123

124
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Figure 2. A snapshot of the power profile of an IoT node

2.2 The energy packet model of the node125

In order to discretise or quantise energy into energy packets, the first step is to determine the quantisation126
step, which, in our case, is the size of the energy packet. We consider an energy packet (in mWh or mAh)127
as a pulse of power or current which lasts for a defined time duration. Assuming that energy is consumed128
during active periods when the node wakes up to perform sensing, computing, or communication (and that129
a negligible amount of energy is consumed during the deep sleep period), the size of the energy packet can130
be considered to be Ep = Pact · tact. However, the quantisation step can be set to any arbitrary value but131
must be kept consistent in the quantisation of the energy harvesting, consumption, and storage processes as132
in Da Silva et al. (2017).133

Let CB (measured in mWh) represent the capacity of the energy storage system (ESS) which may be134
battery or a supercapacitor, and then the capacity of the ESS (in energy packets) is B = CB/Ep. That135
is, the number of energy packets that can be stored in the ESS is B, and the energy states of the ESS are136
{0, 1, 2, · · · , B}. We assume that the node wakes up only when triggered by a random event (e.g., leakage137
of fluids from a pipe in the case of a pipeline monitoring system). In this case, the energy drawn from the138
battery per time unit is scattered independently and uniformly in the sense of a Poison process Kaj and139

Konané (2016). The energy consumption process becomes Enode = tact · PactN
(1/ti)
t , where Nµ

t denotes140
a standard Poisson process on the half line with constant intensity µ. That is, energy is drawn from the141
battery in small jumps of energy Ep = tact ·Pact which occur interspaced by independent and exponentially142
distributed waiting times with expected value ti = tact + tsleep. From the power consumption profile, the143
mean number of energy packets drawn from the energy storage system per time unit in the time interval144
[0, ti] is145

µ =
tact

tact + tsleep
· Pact

Ep
(3)

146
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We consider an intermittent energy harvesting source (e.g., the presence of solar radiation, light, vibration,147
wind, RF radiation, and heat). For simplicity, we assume that the energy arrival times of the energy packets148
follow a Poisson process with rate λH Ng et al. (2013); Wang et al. (2014). This assumption may be149
realistic in self-powered IoT nodes that stay in a deep sleep mode for a time that is exponentially distributed.150
They wake up to receive or transmit data packets, harvest wireless RF energy at the same time and then151
return to sleep mode. From the power generation profile of the energy harvester, the number of energy152
packets generated per time unit in the time interval [0, T ] is153

λH =
1

Ep · T

∫ T

0
PH(τ) dτ. (4)

where PH(t) is the output energy profile of the energy harvesting system. If the harvested energy is greater154
than the energy required to power the IoT node, the surplus is stored in the battery to be used when the155
node’s needs are greater than the energy production. From the energy conservation principle and assuming156
that there is no energy leakage from the ESS, the mean number of energy packets delivered to the battery is157
λ = µ− λH , which also follows a Poisson process. In this case, the process of delivering energy packets158
of the battery is also assumed to follow a Poisson process with mean rate λ = λH − µ.159

2.3 Markov model of energy storage system with multiple energy thresholds160

Suppose that the storage space of the energy storage system (ESS) is partitioned into m non-overlapping161
intervals called energy-saving regimes by introducing m − 1 energy-saving thresholds (or barriers, or162
switches). In the mth interval (with the highest energy content), the IoT node is fully functional and163
performs all its functions typically. However, in the subsequent intervals, some of the functionalities of164
the node may be limited or disabled to save energy to prolong the lifetime of the device, making the165
node semi-functional. In the first interval (with the lowest energy content), most of the functionalities166
(computation and communication) of the nodes are significantly limited or disabled; that is, the node is167
non-functional. Therefore, the node’s mean rate of energy consumption depends on the energy content of168
the energy storage system and is given by169

µ(n) =


µ1 0 < n ≤ K1 ,

µ2 K1 < n ≤ K2 ,

µ3 K2 < n ≤ K3 ,
· · · · · · ,
µm Km < n ≤ B.

(5)

By introducing energy thresholds and reducing energy consumption at the node as the energy content170
of the ESS goes below the various thresholds, the lifetime of the node can be increased. For certain IoT171
sensors, the energy consumption can be reduced on the fly by throttling the speed of the processor clock,172
decreasing the operating voltage, or decreasing the transmission power. The drawback of forcing the node173
to enter into energy saving modes is that it may degrade the quality of service of the nodes and should only174
be considered only when the energy stored in the ESS is below certain critical thresholds and sacrificing175
some level of performance is acceptable. Energy modes for some IoT devices may include: run mode176
(CPU, flash, SRAM, and peripheral on), doz mode (CPU clock runs slower than peripheral on), idle mode177
(CPU off, flash, SRAM, and peripheral on), sleep mode (CPU, flash, SRAM off, and peripheral on), and178
deep sleep mode (CPU, flash, SRAM, and peripheral off), Evanchuk (2024).179
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In the ESS model, we assume that energy is delivered and consumed by quantoms (energy packets). The180
process resembles the behaviour of a queueing system. The energy packets are like customers and the time181
to consume one packet corresponds to service time. The number of customers on the queueing system182
denotes the energy in ESS. This allows us to make use of the existing queueing models.183

We model the dynamic changes in the number of energy packets in the energy storage system (ESS) as an184
M/M(n)/1/B queueing Markov process {N(t)|t ≥ 0}, such that p(n, t) = Pr{N(t) = n} is the probability185
of having n energy packets in the ESS. In the notation, based on Kendall (1953), it is a station with Poisson186
input, exponantially distributed service time, single server and limited to B number of customers inside.187
M(n) underlines that the parameter µ of the time to consume an energy packet may depend on the queue188
length (number of energy packets in the ESS), µ = µ(n). The model consists of a set of equations, see, e.g.189
Kleinrock (1975):190

dp(0, t)

dt
= −λp(0, t) + µ(1)p(1, t),

dp(n, t)

dt
= −(λ+ µ1)p(n, t) + λp(n− 1, t) + µ(n)p(n+ 1, t), n = 1, . . . B − 1,

dp(B, t)

dt
= λp(B − 1, t)− µ(B)p(B, t). (6)

This sytem has well known solution, both in transien and steady states if the parameter µ does not depend191
on n, but in caase of µ(n) the soltion is limited to steady state when state probabilities do not depend on192
time. Therefore in Section 3.2 we analyse its transient state in detail.193

The model can be extended to the case where the distributions between the time of arrival of energy packets194
and the distributions of the time of their consumption are not exponential but are a linear combination195
of exponentially distributed phases that can approximate any distribution. Many software tools adapt the196
parameters of such distributions to the actual measurement data, e.g. Asmussen et al. (1990), Bause et al.197
(2010), as well as tools to solve numerically the resulting Markov chain equations, e.g. Prism, Kwiatkowska198
et al. (2011) or our Olymp, Pecka et al. (2018).199

3 THE ENERGY PERFORMANCE ANALYSIS

The equations in (6) above are solved to determine the performance metrics such as the mean number of200
energy packets in the ESS, the probability that all the energy packets stored in the ESS are depleted, the201
probability that ESS is full and energy packets that arrive after the ESS is full are lost (energy wastage202
probability), and the density of the lifetime of the node. We perform both the steady state and transient state203
analysis of the performance of the ESS to provide more insights into the influence of the mean number of204
energy packets delivered to the ESS, the mean energy consumption rate, and the energy threshold(s) on the205
energy performance of the node.206

3.1 Steady-state analysis207

In steady-state, when limx→∞ p(n, t;n0) = p(n), the differential equations above become linear equati-208
ons which can be easily solved to derive the steady-state distribution of the number of energy packets in209
the ESS and the probability p(0) of depleting all the energy packets stored in the ESS (probability that the210
ESS is empty). The steady-state distribution of the number of energy packets in the ESS is, e.g. Kleinrock211
(1975)212
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p(n) = p(0)
λn

µ(1) · · · µ(n)
, (7)

and taking normalization
∑B

n=0 p(n) = 1, the probability p(0) of depleting all the energy packets stored in213
the ESS is214

p(0) =
1

1 +
∑B

n=1{λn/
∏n−1

i=0 µ(i+ 1)}
.

From the equation above, the steady-state probability p(B) that the ESS is full can be derived. The energy215
storage space of the energy storage systems (e.g., battery or supercapacitor) for IoT nodes is very limited216
(especially for very small and mobile IoT nodes), and energy packets that arrive when the ESS is full are217
lost, resulting in undesirable energy wastage. Also, when all the energy packets stored in the ESS are218
depleted, the node shuts down, interrupting the service provided by the node. Thus, the probability p(0) is219
a critical performance metric and can be considered the service outage probability. In the case of a single220
threshold, K, there are two energy consumption regimes with µ(u) = µ1 (for n < K) and µ(n) = µ2 (for221
n > K) and the performance metrics are also a function of the energy threshold K.222

3.2 Transient-state analysis223

We present the transient-state analysis of the energy performance of the ESS with energy thresholds.224
The steady-state analysis assumes that the mean rate at which energy packets are delivered to the ESS225
and the mean rate at which energy packets are consumed from the ESS are constant. However, the mean226
number of energy packets harvested may vary within 24 24-hour day period and between various days227
and months. In the case of solar energy harvesters, sufficient energy is generated during the solar hour228
period of the day, and no energy is generated at night. There are also fluctuations within the day that may229
result in fluctuations in the mean number of energy packets harvested and the mean number of energy230
packets delivered to the ESS. These time-dependent changes in the number of energy packets harvested231
and delivered to the ESS make transient analysis of the dynamic changes in the energy content of the ESS232
interesting. In the transient-state analysis, the performance metrics considered in the previous section on233
steady-state analysis become time-dependent.234

Transient anlysis of M/M/1/B was performed in Tákacs (1962), Morse (1958), Sharma and Gupta (1982),235
and recently in Massey et al. (2023). Here, we extend it to the case of M/M/(n)/1/B, i.e. state-dependent236
parameters µ(n). The most straightforward approach is to consider the Eqs. (6) in Laplace domain237

sP (0, s)− p(0, 0) = 1− λP (0, s) + µ1P (1, s)

sP (n, s)− p(n, 0) = −[λ+ µ(n)]P (n, s) + λP (n− 1, s) + µ1P (n+ 1, s) 1 ≤ n < B

sP (B, s)− p(B, 0) = λP (B − 1, s)− µBP (B, s) n = B. (8)

where238

P (n, s) = L p(n, t) =

∫ ∞

0
e−stp(n, t)dt and L {p(n, t)

dt
} = sP (n, s)− p(n, 0),
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solve the system (8) for the values of s needed by the inversion algorithm and then look numerically for the239
originals of P (n, s), e.g. with the use of Stehfest algorithm Stehfest (1970):240

p(n, t) =
ln 2

t

N∑
i=1

Vi P (n, s =
ln 2

t
i) ,

and241

Vi = (−1)N/2+i

min(i,N/2)∑
k=⌊ i+1

2 ⌋

kN/2+1(2k)!

(N/2− k)!k!(k − 1)!(i− k)!(2k − i)!
,

in our numerical computations, we used N = 20.242

However, we present also the explicit expressions for P (n, s). Below, we do it for the case when the243
buffer is initially empty, p(0, 0) = 1. Similarly, results can be obtained for a ’mirror’ process that starts at244
B and ends at 0.245

Assume that µ(n) takes m values specific for m zones, as defined in Eqs. (5). Starting from the equations246
in the first interval (e.g., 1 ≤ n ≤ K1 − 1),247

λ
P (n− 1, s)

P (n, s)
=

[
(s+ λ+ µ1)− µ1

P (n+ 1, s)

P (n, s)

]
(9)

Dviding both sides of Eq. (9) by µ1, we get248

λ

µ1

P (n− 1, s)

P (n, s)
=

[
(
s

µ1
+

λ

µ1
+ 1)− P (n+ 1, s)

P (n, s)

]
. (10)

From Eq. (9),249
P (n+ 1, s)

P (n, s)
=

λ[
(s+ λ+ µ1)− µ1

P (n+2,s)
P (n+1,s)

] (11)

and substituting (11) in (10) we get250

λ

µ1

P (n− 1, s)

P (n, s)
=

( s

µ1
+

λ

µ1
+ 1)− λ[

(s+ λ+ µ1)− µ1
P (n+2,s)
P (n+1,s)

]
 (12)

which can be rearranged as251

λ

µ1

P (n− 1, s)

P (n, s)
=

( s

µ1
+

λ

µ1
+ 1)−

λ
µ1[

( s
µ1

+ λ
µ1

+ 1)− P (n+2,s)
P (n+1,s)

]
 . (13)
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The ratio λ
µ1

P (n−1,s)
P (n,s) can be expressed as a Hyper Geometric series as follows:252

λ

µ1

P (n− 1, s)

P (n, s)
=


(

s

µ1
+

λ

µ1
+ 1

)
−

λ
µ1[(

s
µ1

+ λ
µ1

+ 1
)
−

λ
µ1(

s
µ1

+ λ
µ1

+1
)
−···

]
 (14)

We apply the concepts of Hyper Geometric Functions, Lorentzen and Waadeland (1992) and Finite253
Continued Fractions Waadeland and Lorentzen (2008); Ikenaga (2022, accessed on 12 February, 2022) to254
simplify the Hyper Geometric series in Eq. (14). Let255

x =


(

s

µ1
+

λ

µ1
+ 1

)
−

λ
µ1[(

s
µ1

+ λ
µ1

+ 1
)
−

λ
µ1(

s
µ1

+ λ
µ1

+1
)
−···

]
 ,

which can also be expressed as256

x = (a+ b)− b

(a+ b)− b
(a+b)− b

(a+b)−···

,

where a = s
µ1

+ 1 and b = λ
µ1

. Since x contains a copy of itself as the bottom of the first fraction, it can be257
expressed as258

x = (a+ b)− b

x
(15)

The roots of Eq. (15) are259

x =
(a+ b)±

√
(a+ b)2 − 4b

2
. (16)

Since the fraction is positive, we take the positive root260

x =
(a+ b) +

√
(a+ b)2 − 4b

2
. (17)

From Eq. (14)261

P (n, s) =
2b

(a+ b) +
√

(a+ b)2 − 4b
P (n− 1, s) (18)

Therefore, for 1 ≤ n < K1, the transient state probabilities P (n, s) are given by262

P (n, s) =

(
λ

µ1

1

x

)n

(19)

where263

x =
s+ λ+ µ1 +

√
(s+ λ+ µ1)2 − 4λµ1
2µ1
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Applying the above solution iteratively for all intervals, we obtain the transient state probabilities as264
follows:265

P (n, s) =



(
λ

µ1

1

α1(s)

)n

P (0, s), 1 ≤ n ≤ K1 ,(
λ

µ2

1

α2(s)

)n

P (0, s), K1 < n ≤ K2 ,(
λ

µ3

1

α3(s)

)n

P (0, s), K2 < n ≤ K3 ,

· · · · · · ,(
λ

µm−1

1

αm−1(s)

)n

P (0, s), Km−2 < n ≤ Km−1 ,(
λ

µm

1

αm(s)

)n

P (0, s), Km−1 < n ≤ B − 1.

(20)

where266

αi(s) =
s+ λ+ µi +

√
(s+ λ+ µi)2 − 4λµi
2µi

, i = 1, 2, 3, · · ·m.

From the first equation in (8),267
(s+ λ)P (0, s) = 1 + µ1P (1, s)

we obtain P (0, s)268

P (0, s) =
(a+ b) +

√
(a+ b)2 − 4b

(s+ λ)[(a+ b) +
√

(a+ b)2 − 4b]− 2λ
(21)

which can be rearranged to obtain269

P (0, s) =
s+ λ+ µ1 +

√
(s+ λ+ µ1)2 − 4λµ1

(s+ λ){s+ λ+ µ1 +
√

(s+ λ+ µ1)2 − 4λµ1} − 2λµ1
. (22)

From the last equation of (8),270
(s+ µm)P (B, s) = λP (B − 1, s)

and P (B, S) can be expressed as follows:271

P (B, s) =
λ

s+ µm

(
λ

µm

1

αm(s)

)B−1

P (0, s). (23)

We remind that in the case of an M/M/1/B model, the transient solutions obtained in Sharma and Gupta272
(1982), for the same initial condition p(0, 0) = 1 and p(n, 0) = 0, n = 1, . . . B is273

P (n, s) =
(αβ)n[αB−n+1 − βB−n+1]− (αβ)n+1[αB−n − βB−n]

s[αB+1 − βB+1]
(24)

where274

α(s) =
s+ λ+ µ+

√
(s+ λ+ µ)2 − 4λµ

2µ
,
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and275

β(s) =
s+ λ+ µ−

√
(s+ λ+ µ)2 − 4λµ

2µ
.

Similarly,276

P (0, s) =
[αB+1 − βB+1]− (αβ)[αB − βB]

s[αB+1 − βB+1]
(25)

and277

P (B, s) =
(αβ)B[α− β]

s[αB+1 − βB+1]
. (26)

For very large values of B, the transient solution reduces to an M/M/1 model as follows278

lim
B→∞

P (n, s) =
(1− β)ϱn

sαn
(27)

where ϱ = λ/µ is the energy supply to demand ratio.279
280

For other initial conditions, the system of eqautions in (8) is solved numerically. The mean number of281
energy packets in the ESS at time t is282

E[N(t)] =
B∑

n=0

np(n.t) (28)

The Laplace transforms above can be inverted numerically using the Stehfest algorithm to obtain p(n, t)283
from which time-dependent performance metrics such as the service outage probability p(0, t), energy284
wastage probability p(B, t), and the mean number of energy packets in the ESS E[N(t)] can be obtained.285

3.3 Modelling the lifetime of the IoT node286

We investigate the impact of the threshold energy management policy on the device’s lifetime. The287
objective of introducing the adaptive threshold (or imposing the energy-saving regimes) is to increase the288
device’s lifetime. The device’s lifetime is the time required to deplete all the energy packets stored in the289
ESS Kuaban et al. (2023b); Czachórski et al. (2022). We model the device’s lifetime as the first passage290
time of the M/M(n)/1/B model from any starting state to n = 0. The density of the first passage time,291
γi,0(t) of the process that start at n = i and is absorbed at n = 0 can be obtained numerically by solving292
the proposed M/M(n)/1/B model.293

We compute the first passage time from B to zero of the proposed M/M/(n)/1/B model by making state294
zero the absorbing one, i.e. modifying the first equation of the system ((6) to the form295

dp(0, t)

dt
= µ(1)p(1, t);

if the p(1, t) is computed for the chain initiated from state B, the intensity of entering state 0 in the equation296
above, is the density of the first passage time from B to 0,297

γB,0(t) = µ(1)p(1, t); (29)
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Figure 3. Comparing the transient probability of service outage, p(0, t) from the M/M/1/B and M/M(n)/1/B
for µ1 = 2, µ2 = 5, λ = 2, K = 40, and B = 100.

Similarly, to model the first passage time from 0 to B (the time required to charge the ESS to its full298
capacity), we make B the absorbing state and compute p(B − 1, t)λ in chain initiated at state 0.299

γ0,B(t) = λp(B − 1, t). (30)

The performance metrics γB,0 (lifetime of the node) and γ0,B can be obtained numerically using a Markov300
solver developed in Pecka et al. (2018).301

4 NUMERICAL RESULTS

In the numerical results presented, we consider a battery with a charge rating Q = 2100 mAh, debth302
of discharge, DoD = 70%, and voltage v = 3.7 volts. The energy capacity of the battery, CB =303
2100 ∗ 0.7 ∗ 3.7 = 5439 mWh. We assume that the quantisation step (size of an energy packet) is304
Ep = 54.39 mWh and the capacity of the battery in energy packets (maximum number of packets that305
can be stored in the battery) is B = 5439/54.39 = 100 energy packets. Assuming that the mean energy306
delivered to the battery is 108.78 mWh, then the mean number of packets delivered to the battery per hour307
is λ = 108.78/54.39 = 2 energy packets per hour. Similarly, the mean number of energy packets consumed308
per hour is obtained. For each numerical example, we provide the values of the various parameters under309
the figure.310

4.1 Energy performance of an IoT node with a non-solar renewable energy source311

The steady-state and transient-state analyses presented in section 3 above are more applicable to non-solar312
energy sources. That is, energy sources that can produce energy both in the day and in the night (e.g., RF,313
vibration, wind, etc.). Figs. 4 - 7 present the results obtained using the analytical model models presented314
in the previous section.315
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Figure 4. The influence of λ on the probability of having n energy packets in the battery, for µ1 = 3,
µ2 = 5, B = 100, K = 40

Figs. 3, present the changes of the service outage probability, p(0, t) as a function of time until attaining316
a steady state. The results compares two cases; one with threshold and the other without a threshold. The317
introduction of a threshold significantly reduces the probability of service outage, p(0, t).318

Fig.4 illustrates the above solution in the case where the battery volume is B = 100 energy units. The319
only threshold is placed at K = 40, the consumption rates are µ(n) = µ1 = 3 energy units per time320
unit, n = 1, . . . K; µ(n) = µ2 = 5 energy units per time unit, n = 41 . . . B . Depending on the value of321
harvesting rate λ, the probability mass of p(n) is concentrating close to 0 (λ < µ1), close to B (λ > µ2) or322
around K (µ1 < λ < µ2). If λ = µ1. The distribution does not change in the corresponding interval or323
λ = µ2.324

Fig.5 presents the impact of λ, K, and µ1 on the probability p(0) of empty battery, when µ2 = 5,325
B = 100, K = 40. Obviously, increasing the intensity of energy delivery and reducing energy consumption326
in the economical mode reduce the likelihood of energy depletion.327

Figs. 6, 7 display the density of the lifetime of the IoT node γB,0(t) for various values of the threshold328
K = 20, 40, 60 and various values of µ1 = 2.5, 3, 4; µ2 = 5 is not changing. The densities are compared329
with the same density when there is no threshold, and the unique rate is µ = 5. The impact of the energy330
saving – of the threshold K and reduced consumption rate µ1 is important. It influences not only the mean331
time to depletion but also the variance of the distribution.332

4.2 Energy performance of an IoT node with a Solar energy source333

The energy produced by non-solar energy sources (e.g., RF, vibration, wind, etc.) is relatively small and334
may be insufficient for some energy-hungry IoT nodes. A scalable approach to generate sufficient energy335
to power an IoT node is the use of solar energy. However, solar energy sources produce energy during336
the day and do not produce energy during the night, but energy may be consumed during the night. Thus,337
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Figure 5. The influence of µ1 on the probability of empty battery, p(0) for µ2 = 5, B = 100, K = 40

Figure 6. The influence of the proposed energy-saving threshold policy on the density of the lifetime of
the IoT node γB,0(t), for K = 20, 60, µ2 = 5, λ = 2, B = 100.

the analysis presented in section 3 is not sufficient to analyse energy storage systems that are supplied by338
energy from solar energy sources.339

In this case, the performance metrics are obtained by solving the differential equation equation in (6)340
numerically considering various initial conditions, N(0) = n0, mean charging rate, λ, mean energy341
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Figure 7. The influence of µ1 on the density of the lifetime of the IoT node γB,0(t), for µ2 = 5, λ = 2,
B = 100, K = 40.

consumption rates, µ(n) (e.g., µ(n) = µ1 for n ≤ K and µ(n) = µ2 for n ≥ K), and corresponding342
thresholds K. During the day, the ESS is charged with a mean rate of λ− µ(n) and during the night, λ = 0343
and the ESS is discharged at a mean rate of µ(n). We can start with any initial condition (number of energy344
packets at t = 0). For example, we can start with n0 = B (B energy packets in the ESS) or n0 = 0 (zero345
energy packets in the ESS). The distribution of the number of energy packets at the energy of the first day346
becomes the initial condition to obtain the distribution of the energy packet in the ESS during the night347
period (when the solar energy source is absent). Similarly, the distribution of the number of energy packets348
in the ESS at the end of the first night period becomes the initial condition for the evolution of the charging349
process for the second day. The process continues for several days as time evolves.350

5 CONCLUSION

In this paper, we have investigated the practical implications of imposing energy-saving thresholds on the351
energy performance metrics of green IoT nodes. We conducted a steady-state and time-dependent analysis352
of the proposed energy packet-based model of the node, which considers the impact of switching the node353
to more energy-efficient regimes when the defined threshold of the energy content of the ESS is reached.354
We conducted numerical experiments to gain more insight into the extent to which the imposed energy355
threshold improves the energy performance of the green IoT node. We observed that configuring single or356
multiple thresholds improves the energy performance of the node significantly (e.g., increased lifetime357
of the node, reduced probability of service outage and energy wastage), and the value of the threshold(s)358
should be carefully chosen.359
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Figure 8. The dynamic evolution of the mean number of energy packets in the ESS, E[N(t)]: considering
the cases with initial conditions n0 = 0 (starting zero EPs in the ESS) and n0 = B (starting with B EPs in
the ESS), K = 40.
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Figure 9. The dynamic evolution of the mean number of energy packets in the ESS, E[N(t)]: considering
the case without threshold (K = 0) and the case with threshold (K = 40), λ = 4.

Figure 10. The influence of the energy threshold K on the dynamic evolution of the mean number of
energy packets in the ESS, E[N(t)], for λ = 8.
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Figure 11. The influence of the mean charging rate λ on the dynamic evolution of the mean number of
energy packets in the ESS, E[N(t)], for K = 40.

Figure 12. The density of the lifetime of the node, γB,0(t): considering the case without threshold (K = 0)
and the case with threshold (K = 40), λ = 4.
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Figure 13. The dynamic evolution of the probability of service outage, p(0, t): considering the case
without threshold (K = 0) and the case with threshold (K = 40), λ = 4.

Figure 14. The influence of the mean charging rate λ on the probability of energy wastage, p(B, t), for
K = 40.

REFERENCES

Abdul-Qawy, A. S. H., Almurisi, N. M. S., and Tadisetty, S. (2020). Classification of energy saving377
techniques for iot-based heterogeneous wireless nodes. Procedia Computer Science 171, 2590–2599378

Frontiers 20



G.S.Kuaban et al. Energy performance of self-powered Green IoT nodes

Al-Ansi, A., Al-Ansi, A. M., Muthanna, A., Elgendy, I. A., and Koucheryavy, A. (2021). Survey on379
intelligence edge computing in 6g: Characteristics, challenges, potential use cases, and market drivers.380
Future Internet 13381

Albreem, M. A., Sheikh, A. M., Alsharif, M. H., Jusoh, M., and Yasin, M. N. M. (2021). Green internet of382
things (giot): applications, practices, awareness, and challenges. IEEE Access 9, 38833–38858383

Alsharif, M. H., Jahid, A., Kelechi, A. H., and Kannadasan, R. (2023a). Green iot: A review and future384
research directions. Symmetry 15385

Alsharif, M. H., Jahid, A., Kelechi, A. H., and Kannadasan, R. (2023b). Green iot: A review and future386
research directions. Symmetry 15, 757387

Asmussen, S., Nerman, O., and Olsson, M. (1990). Fitting phase-type distributions via the em algorithm.388
Scandinavian Journal of Statistics 23, 419–441389

Bause, F., Buchholz, P., and Kriege, J. (2010). Profido - the processes fitting toolkit dortmund, in proc. of390
the 7th international conference on quantitative evaluation of systems. IEEE Computer Society 96391

Czachórski, T., Gelenbe, E., and Kuaban, G. S. (2022). Modelling energy changes in the energy harvesting392
battery of an iot device. In Proceedings of the 2022 30th International Symposium on Modeling, Analysis,393
and Simulation of Computer and Telecommunication Systems (MASCOTS) (Nice, France: IEEE), 81–88.394
doi:10.1109/MASCOTS56607.2022.00019395

Da Silva, A. P. C., Renga, D., Meo, M., and Marsan, M. A. (2017). The impact of quantization on the396
design of solar power systems for cellular base stations. IEEE Transactions on Green Communications397
and Networking 2, 260–274398

[Dataset] Evanchuk, E. (2024). Meeting power demand with energy harvesting in iot sensor399
nodes, https://www.digikey.pl/pl/articles/meeting-power-demand-with-energy-harvesting-in-iot-sensor-400
nodes, accessed on august, 2024401

Gautam, A. and Dharmaraja, S. (2018). An analytical model driven by fluid queue for battery life time of a402
user equipment in LTE-A networks. Physical Communication 30, 213–219403

Gelenbe, E. (2011). Energy packet networks: Ict based energy allocation and storage. In International404
Conference on Green Communications and Networking (Springer), 186–195405

Gelenbe, E. (2012). Energy packet networks: adaptive energy management for the cloud. In Clou-406
dCP’12: Proceedings of the 2nd International Workshop on Cloud Computing Platforms (ACM,407
https://doi.org/10.1145/2168697.2168698), 1–5408

[Dataset] Ikenaga, B. (2022, accessed on 12 February, 2022). Finite continued fracti-409
ons, https://sites.millersville.edu/bikenaga/number-theory/finite-continued-fractions/finite-continued-410
fractions.html411

Jones, G. L., Harrison, P. G., Harder, U., and Field, T. (2011). Fluid queue models of battery life.412
In Proceeding of the 2011 IEEE 19th Annual International Symposium on Modelling, Analysis, and413
Simulation of Computer and Telecommunication Systems (IEEE), 278–285. doi:10.1109/MASCOTS.414
2011.61415
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