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Corresponding author: Mert Nakıp (email: mnakip@iitis.pl)

ABSTRACT Electronic Nose (E-Nose) systems, widely applied across diverse fields, have revolutionized
quality control, disease diagnostics, and environmental management through their odor detection and
analysis capabilities. The decision and analysis of E-Nose systems often enabled by Machine Learning
(ML) models that are trained offline using existing datasets. However, despite their potential, offline
training efforts often prove intensive and may still fall short in achieving high generalization ability and
specialization for considered application. To address these challenges, this paper introduces the e-rTPNN
decision system, which leverages the Recurrent Trend Predictive Neural Network (rTPNN) combined with
online transfer learning. The recurrent architecture of the e-rTPNN system effectively captures temporal
dependencies and hidden sequential patterns within E-Nose sensor data, enabling accurate estimation of
trends and levels. Notably, the system demonstrates the ability to adapt quickly to new data during online
operation, requiring only a small offline dataset for initial learning. We evaluate the performance of the
e-rTPNN decision system in two domains: beverage quality assessment and medical diagnosis, using
publicly available wine quality and Chronic Obstructive Pulmonary Disease (COPD) datasets, respectively.
Our evaluation indicates that the proposed e-rTPNN achieves decision accuracy exceeding 97% while
maintaining low execution times. Furthermore, comparative analysis against established Machine Learning
(ML) models reveals that the e-rTPNN decision system consistently outperforms these models by a
significant margin in terms of accuracy.

INDEX TERMS E-Nose, trend prediction, multi-sensor, recurrent trend predictive neural network, online
learning,

I. INTRODUCTION

ELECTRONIC Nose (E-Nose) is an analytical device
engineered to mimic the mammalian olfactory system

through the implementation of a sensor array that responds
to a wide range of analytes. They are capable of providing
consistent and reproducible results while preventing any po-
tential operator fatigue that can occur during manual odor
analysis processes [1]. Their popularity has been growing
rapidly ever since the the first design of E-Nose was in-
troduced by Persaud and Dodd [2] in 1982 who presented
the idea of an "electronic nose" as a device that utilizes an
intelligent array of chemical sensors and pattern recognition
techniques to classify odors. E-Noses are low-cost systems

that provide rapid response, without requiring laboratory
environment or trained professionals.

Following the advancements in sensor technology, mate-
rials, software, and microcircuitry, E-Noses have been ap-
plied in diverse fields of applications including the food and
beverage industry, health care and pharmaceuticals, envi-
ronmental monitoring, and agriculture [3]. Their capabilities
in detecting and analyzing odors have opened up new pos-
sibilities for quality control, monitoring, and disease diag-
nostics, revolutionizing fields ranging from food production
to environmental management and healthcare. During the
decision making process for various applications, most E-
Noses, recently developed, utilize a Machine Learning (ML)-
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based processing algorithms [4]. Those ML algorithms often
learn the decision making process based on offline collected
data samples exemplifying the targeted application and envi-
ronment. However, collecting a dataset, which is sufficiently
large for obtaining a ML decision system with high general-
ization ability, is an expensive process that requires extensive
experiments. It is also rare to find datasets, available for
learning, collected on the exact same E-Nose system and
environmental factors. Therefore, one may say that offline
training requires intensive effort and can still be insufficient
for achieving high generalization ability towards different
applications.

In this paper, we present a novel online learning E-
Nose decision system based on the Recurrent Trend Pre-
dictive Neural Network (rTPNN) [5], [6], which is called
e-rTPNN. The proposed e-rTPNN decision system captures
both temporal correlations of sensor reading and interrela-
tionships between sensors simultaneously while maximizing
the classification accuracy of the E-Nose system. The rTPNN
model used in our e-rTPNN decision system is trained in
consecutive offline and online stages using transfer learning
on model parameters learned using an existing dataset over
fixed-length time windows. In offline learning, e-rTPNN
first obtains general knowledge by using data obtained from
some experiments of the same or similar E-Nose system
as the one considered in the online application. In order to
address this issue, the proposed e-rTPNN system updates its
parameters online via transfer learning. Based on its online
learning ability, e-rTPNN can easily and quickly adapt to the
characteristics of the application and environment in which
it has been newly deployed. In this way, e-rTPNN eliminates
the need to collect training data for long periods of time for
each new application.

The performance of the new e-rTPNN decision system
is evaluated for two different E-Nose applications on wine
quality assessment and Chronic Obstructive Pulmonary Dis-
ease (COPD) detection using publicly available datasets [7],
[8]. We also compare the performance of e-rTPNN with var-
ious benchmark models including rTPNN, Long-Short Term
Memory (LSTM), Convolutional Neural Network (CNN) and
Multi-Layer Perceptron (MLP).

The rest of this paper is organized as follows: Section II
reviews the related works focusing on the application areas
and deep learning based methods for E-Nose systems. Sec-
tion III presents the novel online learning e-rTPNN decision
system. Section IV, respectively, reviews publicly available
E-Nose datasets, evaluates the performance of e-rTPNN and
compares that against the well-known ML models as well as
the rTPNN model. Finally, Section V concludes this work
and presents some open research issues for future work.

II. RELATED WORKS
In recent years, the most common methods for classification
and regression problems in E-Nose field have been deep
learning based methods. The recent trend of research often
uses CNN in order to automatize and learn feature extraction

and sensor data fusion in various E-Nose applications [9]–
[15]. In [16], CNN was utilized to classify the freshness of
20 different types of food items in three main categories of
fruits, vegetables and meats. In [17], a custom CNN structure,
based on LeNet-5, was used to effectively classify gases such
as CO, CH4, and their mixtures with varying ratios.

On the other hand, Recurrent Neural Network (RNN)
models have also been used as a method of choice for E-
Nose applications [18]–[20] since they are highly effective
and scalable for problems involving sequential data [21]. Dif-
fering from other state-of-the-art methods, such as CNN or
MLP, the internal memory of RNN allows to extract temporal
relationships. This property of RNN is highly desirable for E-
Nose applications since sensor readings are often temporally
correlated.

In [22], LSTM used with multi-task learning to simulta-
neously detect gas types and estimate their concentrations.
Apart from achieving higher performance results compared
to other state-of-the-art methods, it is concluded that two
tasks improved each others individual performances. Refer-
ence [23] evaluated four RNN models, LSTM, Gated Re-
current Unit (GRU), Bi-directional LSTM (BiLSTM), Bi-
directional GRU (BiGRU), for high-precision monitoring of
ethanol and glucose during simultaneous saccharification and
fermentation of cassava. Authors used commercially avail-
able PEN3 E-Nose for gas measurements. BiLSTM achived
98% coefficient of predictive determination for ethanol while
GRU obtained 99% for glucose, proving the eligibility of
RNN models for E-Nose applications. Reference [24] devel-
oped GRU based auto-encoder (GRU-AE) model combined
with ensemble pruning model to extract temporal and high-
dimensional features for lung cancer detection, where GRU-
AE achieved 94.22% sensitivity and 93.55% accuracy.

Some research [25]–[30] combined LSTM with CNN,
creating hybrid architectures. Reference [25] proposed a
novel deep learning model with Convolutional LSTM (Con-
vLSTM) layers to predict odor descriptor ratings (e.g. gar-
lic, fish, burnt etc.). ConvLSTM layers learn spatiotemporal
features from the sensor data. They extract temporal char-
acteristics of the signals while simultaneously utilizing the
interdependencies between sensors. The performance of this
model is compared with state-of-the-art models such as CNN
and LSTM. It was concluded that utilizing the spatiotemporal
features of the sensor data is more effective than utilizing
the spatial or temporal features separately. A hybrid deep
learning method (H-CRNN) was proposed for early detec-
tion of low concentration carbon-monoxide (CO) gas [26].
The convolution layer captures short-term dependencies from
sensor data, while the recurrent layer explores long-term
dependencies. The results showed that, especially with higher
prediction horizons, H-CRNN Proposed model combined
with a gated attention mechanism performed significantly
better compared with recurrent models. Reference [27] tested
several models including CNN, CNN-LSTM, LSTM, GRU,
CNN-GRU for asthma detection problem.

E-Nose technology holds significant promise for vari-
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ous applications, ranging from industrial quality control to
medical diagnostics. Leveraging deep learning techniques
such as CNNs and RNNs, researchers have achieved re-
markable results in feature extraction, sensor data fusion,
and temporal relationship extraction. This interdisciplinary
approach has enabled E-Noses to provide real-time results
with on-site measurements, contributing to reducing food
waste, decreasing quality control costs, and offering non-
invasive alternatives for disease diagnosis and monitoring in
the medical field. By analyzing breath and urine samples,
E-Noses offer potential solutions for early disease detec-
tion, bio-marker tracking, and infection identification, thus
improving patient care and overall public health. As the
food and beverage industry is one of the most important
beneficiaries of high-tech E-Noses, recent research utilized
an E-Nose for spoilage detection [31], quality assessment
[16], shelf-life investigation [32], adulteration detection [33],
[34], contamination detection, flavor profiling, mimicking
sensory analysis [35], tracking the fermentation process [36].
Extensive research has been conducted on a wide variety
of food products, such as mushrooms, coffee, tea, meat,
maize, wine, and beer. Utilization of E-Noses for the food
and beverage industry can help manufacturers reduce food
waste and decrease the cost of quality control. In addition,
E-Noses are capable of decreasing the time consumed during
the quality control process by providing real-time results with
on-site measurements. These measurements are possible due
to the nature of the device, which does not require a special
sampling process.

E-Noses were also proved to be very useful for medical
field, especially for non-invasive diagnostic solutions. The
application areas include disease diagnostics, early detection,
disease progression monitoring, biomarker tracking, identi-
fication of infections, quality control etc. Human exhaled
breath contains over 3000 volatile organic compounds [37].
By studying breath signature E-Noses can be predictive of
numerous respiratory and systematic diseases. There is ex-
tensive research for the non-invasive diagnosis of pulmonary
diseases such as; COPD, Covid-19, lung cancer, cystic fi-
brosis from the exhaled breath [38]–[40]. Also, by analyzing
blood glucose levels, E-Noses can be utilized as non-invasive
diagnostic tools for diabetes. Additionally, E-Noses have
been proposed for identifying VOCs in the urine of women
with cervical cancer [41].

III. THE E-RTPNN DECISION SYSTEM WITH ONLINE
TRANSFER LEARNING
In this section, we present the proposed e-rTPNN decision
system. To this end, we describe the architectural design
of the rTPNN, and we detail its online transfer learning
algorithm. The e-rTPNN decision system, given in Figure 1,
process the data read through an array ofN sensors using the
rTPNN model with online transfer learning. We let xkn denote
the data reading of sensor n sampled at discrete time k.

As presented in Figure 1, e-rTPNN calculates the probabil-
ity yM of each classM based on the current and previous sen-

sor readings {xkn}n∈{1,...,N} and {xk−1n }n∈{1,...,N} at each
sampling time k. To this end, the e-rTPNN decision system
is comprised of rTPNN specific layer and fully connected
layers along with the online transfer learning.

A. RTPNN LAYER: EXPECTED LEVEL AND TEMPORAL
TREND

rTPNN layer, which is the first layer in our e-rTPNN system,
is used to extract the temporal features – trend tkn and level lkn
– for the reading of each sensor n.

rTPNN [6] is capable of performing classification based
on multi-sensor time series data while predicting trends and
levels of the data simultaneously. Diverging from established
methods that only use the present data in a sequential manner,
the recursive structure of rTPNN allows for predictions based
on the progression of previous data in addition to the current
sensor readings. This property allows rTPNN to be resilient
against sudden fluctuations of sensor data that may be caused
due to hardware malfunction, noise, or data processing er-
rors in E-Nose systems. As shown in earlier applications
of rTPNN for fire detection [6] and renewable energy man-
agement [42], rTPNN’s internal structure can capture the
patterns inherent in time series data, hence reducing the
error in the output and effectively increasing the predictive
capabilities of the network.

The rTPNN layer is comprised of two units, Trend Pre-
dictor and Level Predictor, which are detailed in Figure 2,
for each sensor n. These units take the current and previous
sensor readings xkn and xk−1n and calculate temporal trend tkn
and expected level lkn. The output of the rTPNN layer consists
of N channels, each of which is a vector of [xkn, t

k
n, l

k
n]

T .

1) Trend Predictor

Trend predictor module calculates the trend of the sensor data

tkn = α1
n(x

k
n − xk−1n ) + α2

nt
k−1
n (1)

The architecture of the trend predictor module is a linear
recurrent neuron. As given in (1), the trend predictor cal-
culates the trend tkn based on a current sensor reading xkn,
the previous sensor reading xk−1n and the value of trend tk−1n

previously calculated. The parameters α1
n and α2

n are learned
during the training using an offline collected dataset.

2) Level Predictor

The level predictor module computes the expected level
lkn based on the current sensor reading xkn and previously
predicted level lk−1n :

lkn = β1
nx

k
n + β2

nl
k−1
n (2)

The architecture of the level predictor module is a linear
recurrent neuron, as shown in Figure 2. The parameters β1

n

and β2
n are the weights of the recurrent neuron and are learned

by the recurrent neuron during training.
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FIGURE 1: The architectural design of the proposed e-rTPNN decision system, which is based on the rTPNN model with online transfer learning

+-

+

FIGURE 2: Trend and Level Predictor units of the rTPNN layer for a sensor n

B. FULLY CONNECTED LAYERS: MULTI-CLASS
CLASSIFICATION

The final layers of the rTPNN model are the three fully
connected layers used for the classification task. Two of
these layers have H1 and H2 neurons, respectively, each of
which utilizes the ReLU activation function. The last fully
connected layer is the output layer with M neurons with a
softmax activation function. Here M is equal to the number
of output classes for each dataset. The computation of H1

and H2 are given in (3) and (4):

H2 = F(2M) (3)
H1 = 2H2 (4)

Where F(·) is the function that calculates the nearest power
of two of its input.

The forward pass of these layers are simply:

Zk
1 = ReLU(W1 Z

k
0 ) +B1, (5)

Zk
2 = ReLU(W2 Z

k
1 ) +B1, (6)

Y k = softmax(W3 Z
k
2 ) (7)

where Wh is the input weights matrix, Bh is the vector of
biases, and Zk

h is the output of hidden layer h. In particular,
Zk
0 =

[
tkn, l

k
n, x

k
n : n ∈ {1, . . . , N}

]
. In addition, Y k is

the output vector of the rTPNN model, and the softmax(·)
activation function is defined as

softmax(ai) =
eai∑M
j=1 e

aj

, for i = 1, 2, . . . ,M. (8)

C. ONLINE TRANSFER LEARNING
We now present the operation of the e-rTPNN decision
system, which is presented in Algorithm 1, focusing on its
online learning.

As shown on lines 1-4 of Algorithm 1, the rTPNN model
is first trained offline prior to the online operation using the
available dataset. To this end, on line 1, the input data X train

off
and the corresponding desired output Dtrain

off are obtained
from the offline dataset. Then, on lines 2 and 3, the set of
rTPNN parameters, denoted by P , is initialized randomly
from normal distribution and updated until the training error
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Algorithm 1 The e-rTPNN decision system with online
transfer learning

1: (X train
off , D

train
off )← get_offline_data();

2: P ← initialize();
3: P ← rTPNN_fit(P, X train

off , D
train
off );

4: X0 ← read_sensor_data();
5:
6: X train

on = [ ];
7: for (k = 1, k++, k <∞) do
8: Xk ← read_sensor_data();
9: X train

on ← [X train
on , Xk]);

10: Y k ← rTPNN_predict(P, Xk, Xk−1);
11:
12: if (k mod K) == 0 then
13: Dtrain

on ← get_ground_truth(k);
14: P ← rTPNN_fit(P, X train

on , Dtrain
on );

15: X train
on = [ ];

16: end if
17:
18: end for

does not improve for 3 successive epochs. The vector of
initial sensor readings, denoted by X0, is then obtained for
k = 0 on line 4, where Xk = [xk1 , . . . , x

k
N ].

The online operation of the e-rTPNN decision system is
given from line 7 to line 18. Prior to the online operation of
the For each discrete time k, first, the vector current sensor
readings, Xk, is obtained on line 8 and added into the list
of inputs, denoted by X train

on , to be used for online learning
on the following line 9. Subsequently, based on Xk and the
most recent rTPNN parameters P , the output vector Y k is
calculated through equations (5)-(7).

If the current time window k is a multiple of the on-
line training period K (line 12), the rTPNN parameters are
updated between lines 13 and 15. The rTPNN parameters
are updated using supervised learning with back-propagation
through time. Therefore, on line 13, the list of desired output
vectors, denoted by Dtrain

on , corresponding to the list of inputs
X train

on , i.e. the labeled training data, is provided. Using X train
on

and Dtrain
on , the rTPNN parameters are updated on line 14.

After the training is completed, X train
on is cleared on line 15.

IV. RESULTS
In this section, we present the performance of the proposed
e-rTPNN model in comparison with original rTPNN model
when applied to the publicly available E-Nose datasets,
which shall be presented in Section IV-A. To this end, we first
analyze the datasets used to obtain performance evaluation
results. Then, we evaluate the performance of the models in
terms of accuracy, recall, F1 score, specificity and Matthew
Correlation Coefficient (MCC). We present the benefits of
the online learning approach compared to the standard offline
learning.

Furthermore, we conduct a comparative analysis with
other state-of-the-art machine learning models. Specifically,

we evaluate the effectiveness of e-rTPNN alongside LSTM,
MLP, and CNN when applied to the same problem. We also
present the structure of these models and the details of their
parameter tuning in Section IV-D1

A. DATASETS AND THEIR ANALYSIS

We evaluate the performance of the proposed e-rTPNN using
the sensor data provided by two online available datasets for
wine spoilage detection [7] and COPD detection [8].

1) Wine Spoilage Detection

A time series dataset is provided in [7] for a wine quality
detection application that specifically focuses on spoilage
thresholds. The dataset consists of 235 recorded measure-
ments of wines, which are categorized into three groups: high
quality (HQ), average quality (AQ), and low quality (LQ).
In addition to these groups, the dataset includes 65 recorded
measurements for ethanol. Each recorded measurement file
is comprised of 3330 samples corresponding to 180 seconds.
The data was collected using an E-Nose system that utilizes
6 MOS gas sensors, with two sensors each for:

• MQ3: methane, hexane, LPG, CO, alcohol, and benzene
• MQ4: methane and natural gas
• MQ6: propane, LPG, and iso-butane

Although some samples also included measurements of rel-
ative humidity and temperature, the present paper will only
consider the outputs of the gas sensors due to missing data
samples of relative humidity and temperature. Original sen-
sor data was inverted to transform kilo-ohm units to Siemens
unit since Siemens data increases-decreases in proportion
with the gas concentration in the chamber.

Figure 3 shows the transformed sensor readings for each
class.

FIGURE 3: Sensor outputs for a sample wine bottles of each class.
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2) COPD Detection
Chronic Obstructive Pulmonary Disease dataset [8] is ob-
tained on exhaled breath of a group of patients by using an
array of MOS sensors:
• SP-3: Alcholol, solvent
• MQ-3: Methane, LPG, hexane, alcohol, CO, benzene
• MQ-135: Ammonia, carbon dioxide, NOx, benzene,

alcohol, smoke
• MQ-137: Ammonia
• MQ-138: Toluene, acetone, alcohol, methanol
• TGS 800: CO, methane, isobutane, hydrogen and

ethanol.
• TGS 813: Combustible gases (i.e. methane, propane,

butane)
• TGS 822: Ethanol, Solvent Vapors
The dataset contains samples collected from 20 people

affected by COPD, 4 smokers, and 10 healthy control in-
dividuals. In addition, there are 10 files collected only for
air. Sensor reading measurements for each class of COPD,
smoker, healthy individual, and air are given in Figure 4.

For this dataset, due to unbalanced number of samples
where COPD class has significantly more samples in compar-
ison with other classes, we opted out for binary classification
in order to detect whether a sample belongs to a COPD
patient or not.

FIGURE 4: Exhaled breath samples acquired with the E-Nose device for AIR,
COPD, Smoker and Control (healthy)

B. PERFORMANCE METRICS
In order to reduce possible bias that can occur due to random
split of train/test datasets and test the generalization abilities
and robustness of the networks, 5-fold cross-validation was
employed to assess the performances of proposed e-rTPNN
and compared methods.

Since models were tested on multi-class classification
problems, performance criteria will be presented for each
class, as well as the overall test accuracy. We present test

accuracy, recall, specificity, F1 scores and Matthews Correla-
tion Coefficient (MCC) for each class. All of the results were
obtained by averaging the results of 5 trainings of 5-fold cross
validation.

Accuracy is computed by taking the percentage correctly
classified samples to all the instances in a dataset. It is
calculated as Accuracy = TP+TN

TP+FP+TN+FN , where TP=
True positive, TN= True negative, FP= False positive, FN=
False negative. For our problem, we calculated binary accu-
racy values for each class, by treating every sample belonging
to that class as a positive sample and all others as negative
samples.

Specificity, or the True Negative Rate, is the measure of a
model’s ability to correctly identify negative instances and
calculated as TN

TN+FP . Recall, also known as Sensitivity or
True Positive Rate, evaluates the capability of the model
to correctly identify positive instances and is calculated as:

TP
TP+FN which is the ration of detected positive samples to
all positive samples. The higher the recall value, the more
positive samples were detected.

F1 score is the harmonic mean of precision and recall
and is calculated as 2×(Precision×Recall)

Precision+Recall , where Precision is
computed as TP

TP+FP .
MCC is a highly reliable evaluation metric as it takes

into account all four of the confusion matrix elements and
produces high scores only if the prediction obtained good
results in all of these categories. MCC is calculated as

(TP ·TN)−(FP ·FN)√
(TP+FP )·(TP+FN)·(TN+FP )·(TN+FN)

.

C. ONLINE TRANSFER LEARNING VS OFFLINE
LEARNING
1) Class Accuracy
Table 1 presents average accuracy results over 5 folds and
standard deviations for all classes and overall accuracy re-
sults for whole datasets.

TABLE 1: Test accuracy comparison of online e-rTPNN and offline rTPNN

Dataset Class Models

e-rTPNN rTPNN

Wine

LQ 0.9808 ± 0.0013 0.9460 ± 0.0230
AQ 0.9754 ± 0.0018 0.9868 ± 0.0104
HQ 0.9843 ± 0.0056 0.9498 ± 0.0171

Ethanol 0.9844 ± 0.0019 0.9741 ± 0.0071

Overall
Accuracy 0.9625 ± 0.0028 0.9284 ± 0.0230

COPD
Overall

Accuracy 0.9693 ± 0.0500 0.9400 ± 0.0221

Looking at the Table 1, we observe that online learning
approach increased the performance of the standard e-rTPNN
in a significant way. Not only the classification accuracy in-
creased for almost all classes, the overall accuracy increased
from 92 % to 96 % for the wine dataset, and from 94 % to 97

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3401569

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



P. Bulucu et al.: Multi-Sensor E-Nose based on Online Transfer Learning Trend Predictive Neural Network

TABLE 2: Recall, Specificity, F1 Score and MCC comparison of e-rTPNN and rTPNN

Dataset Class Label Model Metrics

Recall Specificity F1 Score MCC

Wine

LQ e-rTPNN 0.9539 0.9882 0.9555 0.9433
rTPNN 0.8645 0.9697 0.8727 0.8406

AQ e-rTPNN 0.9765 0.9736 0.9734 0.9499
rTPNN 0.9892 0.9842 0.9860 0.9736

HQ e-rTPNN 0.9439 0.9904 0.9454 0.9361
rTPNN 0.8671 0.9643 0.8250 0.7986

Ethanol e-rTPNN 0.9451 0.9921 0.9525 0.9431
rTPNN 0.9006 0.9890 0.9210 0.9058

COPD Overall e-rTPNN 0.9896 0.9455 0.9726 0.9416
rTPNN 0.9634 0.9226 0.9365 0.8825

% for the COPD detection dataset. Furthermore, we can see
that standard deviation values are much lower for the online
method, suggesting a more consistently high performance.

In online learning, algorithm goes over every test sample
one-by-one. We can observe the effect of this method in Fig
5 that shows a random part of true labels and corresponding
predictions made by the online model for a wine sample.
When observing the figure we can see where accuracy drops
at beginning of each new sample, and then fixes itself at the
next window. Every sample has 3300 data points and we can
see a slight drop of accuracy at the beginning of new samples
only to be quickly fixed by the algorithm.

FIGURE 5: Model predictions vs true labels during online learning for three
samples. Marked areas show wrong predictions at the start of new samples and
the quick recovery of the algorithm.

2) Recall, Specificity, F1 Score and MCC
We present the performance results of e-rTPNN and rTPNN
in Table 2. In our case, multi-class classification, we measure
the model’s ability to detect the positive samples for each
class. Looking at the Table 2, we see that recall metric
increased for every class, except the average quality wine
class, which was already very high.

Table 2 shows that specificity was very high for offline e-
rTPNN to begin with. However there is still a slight increase
in performance due to the online learning approach. F1
score, that presents the balance between recall and precision
significantly increased after the online learning approach.
This shows that online learning increases both recall and
precision. Especially for high quality wine dataset samples,
F1-score of the offline method increased from a low 82% to
a very high 94%.

Table 2 present a steep increase in MCC performance. For
high quality wine samples, MCC increased from 79% to 93%
and for the COPD dataset MCC went from 88% to 94%.

The results of this section show that there is a very clear
advantage of using online transfer learning based approach.
Apart from its ability to adapt to new information, this
method increased all of the performance evaluation metrics.

D. E-RTPNN VS STATE-OF-THE-ART METHODS
After comparing the online transfer learning based e-rTPNN
to the offline model, we also compare our models to the
stare-of-art classification methods, commonly used for E-
Nose applications.

1) Methods Used for Comparison
In this section, we briefly explain the structures of these
models.

LSTM model is often applied to the same problems, in
order to compare the performance of the proposed methods
to a state-of-the-art RNN structure. We construct an LSTM
network with a 64 LSTM cells and the same fully connected
structure of the e-rTPNN model withH1, H2 andM neurons
to keep the model architectures similar.

CNN model is constructed to observe the performance of
a convolutional structure without the trend and level infor-
mation of the recurrent model. Similar to the LSTM model,
to keep the structures similar, CNN model structure included
two 1D convolutional layers with FT and FR neurons and
the fully connected layers withH1, H2,M neurons. Here FT
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FIGURE 6: Star diagrams for performance results on wine dataset for the classes A: Low Quality, B: Average Quality, C: High Quality, D: Ethanol

and FR are calculated as:

FT = F

(√
8H1

N/2

)
(9)

FR = FT (10)

where F is the function that calculates power of two value
that is nearest to its input and N is the number of sensors.

MLP model is applied to observe the network perfor-
mance without the trend and level data as well as the high
level features extracted by the convolutional layers. Model
was constructed with the fully connected structure of the e-
rTPNN (H1, H2,M neurons).

All methods used ReLU activation function for hidden
layers and softmax activation function for the final layer.

2) Performance Results on Wine Dataset
Fig 6 presents the star diagram with the performance results
of all methods applied to wine dataset. From the figure, we
can see that except the average quality class where all models
achieved satisfactory results, there are drastic performance
differences between rTPNN and state-of-the-art methods. On
top of that e-rTPNN managed to take this a step further,
surpassing the performance of even the rTPNN, which was
already higher compared to the other models.

We see that, high quality class was challenging for most of
methods. Even rTPNN has relatively low scores. e-rTPNN on

the other hand, manages to improve on all evaluation metrics,
almost reaching the perfect score. The overall test accuracy
results for e-rTPNN, rTPNN, LSTM, CNN and MLP are
respectively 0.9625, 0.9284, 0.9066, 0.873 and 0.8857.

3) Performance Results on COPD Dataset
The overall test accuracy results for e-rTPNN, rTPNN,
LSTM, CNN and MLP are 0.9693, 0.9400, 0.9314, 0.9539
and 0.9149 respectively. Star diagram with the performance
results of all methods applied to the COPD dataset are given
in Fig 7. From the figure, we see that e-rTPNN achieved
the highest performance results. In contrast with the wine
dataset, MLP performed higher that the LSTM model. With
that, we can deduce that the online learning approach of the e-
rTPNN manages to overcome the issues these models faced,
reaching almost 97 % test accuracy.

One observation that needs to be highlighted, is the low
performance of the CNN model. CNN is a widely utilized
method for many classification algorithms, including E-Nose
applications. However, our results show that e-rTPNN sig-
nificantly outperform the CNN model. This indicates that
proposed model structure is more suitable for these type of
problems, where time series data is being utilized.

E. COMPUTATION TIME MEASUREMENTS
Training and testing times for rTPNN, LSTM, CNN and
MLP are given in Figure 8. Note that all experiments were
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FIGURE 7: Star diagram for performance results on COPD dataset

constructed with Python’s Keras library and run on Google
Colab using Central Processing Unit (CPU). Google Colab
utilizes 2.20GHz Intel®Xeon®CPU.

FIGURE 8: Training and testing times for models

Training times were computed until the model reaches the
best performance results. From the figure, we can see that
rTPNN reached best weights a lot faster when compared
to other models. The short training time of the CNN on
COPD model, was due to models inability to further increase
its performance. Since e-rTPNN with online transfer goes
through every test sample one at a time with the batch size
of 1, the learning times differ from the offline counterparts.

V. CONCLUSION
In this paper, for E-Nose applications, we have developed e-
rTPNN decision system which learns from both offline avail-
able dataset(s) and online self-collected sensory data. The e-
rTPNN system enables capturing temporal dependencies and
hidden sequential patterns due to its recurrent structure that
estimate the trend and level of the time series data. Moreover,
the developed online transfer learning approach of e-rTPNN,
consisting of two consecutive stages, improves classification
performance by learning from both existing offline datasets
and sensor readings collected online in fixed-length time
windows. Based on its online transfer learning approach,
the e-rTPNN decision system can quickly adapt to new
environments and data obtained from these environments,
eliminating the need for collecting new training data.

Furthermore, we have tested the performance of the e-
rTPNN model on publicly available wine quality assess-
ment and COPD detection E-Nose datasets. We compare
the performance of the proposed method with the state-of-
the-art CNN, MLP, and LSTM models. In order to test the
generalization abilities of these models and prevent skewed
results due to the selection of train-test datasets all training
was performed with 5-fold cross-validation. The test results
showed that the proposed e-rTPNN system achieves above
97% accuracy with considerably low training and execution
times. In addition, for the majority of experiments, e-rTPNN
outperforms the compared models by a significantly large
performance margin (varying from 1% to 5%).

As this paper developed the e-rTPNN decision system
and evaluated its capabilities for E-Nose applications, future
work shall implement and test the e-rTPNN system for real-
time experiments on an actual E-Nose hardware setup.
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