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Limitations of tensor-network approaches for optimization and sampling:
A comparison to quantum and classical Ising machines
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Optimization problems pose challenges across various fields. In recent years, quantum annealers have
emerged as a promising platform for tackling such challenges. Here, to provide an additional perspec-
tive, we develop a heuristic tensor-network-based algorithm to reveal the low-energy spectra of Ising
spin-glass systems with interaction graphs relevant to present-day quantum annealers. Our deterministic
approach combines a branch-and-bound search strategy with an approximate calculation of marginals via
tensor-network contractions. Its application to quasi-two-dimensional lattices with large unit cells of up
to 24 spins, realized in current quantum annealing processors, requires a dedicated approach that uses
sparse structures in the tensor-network representation and GPU hardware acceleration. We benchmark our
approach on random problems defined on Pegasus and Zephyr graphs with up to a few thousand spins,
comparing it against the D-Wave Advantage quantum annealer and the simulated bifurcation algorithm,
with the latter representing an emerging class of classical Ising solvers. In addition to examining the qual-
ity of the best solutions, we compare the diversity of low-energy states sampled by all the solvers. For the
largest considered independent and identically distributed problems with over 5000 spins, the state-of-the-
art tensor-network approaches lead to solutions that are 0.1% to 1% worse than the best solutions obtained
by Ising machines while being 2 orders of magnitude slower. We attribute these results to approximate
contraction failures. For embedded tile planting instances, our approach reaches approximately 0.1% from
the planted ground state, a factor of 3 better than the Ising solvers. While all three methods can out-
put diverse low-energy solutions—e.g., differing by at least a quarter of spins with energy error below
1%—our deterministic branch-and-bound approach finds sets of a few such states at most. In contrast,
both Ising machines prove capable of sampling sets of thousands of such solutions.
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I. INTRODUCTION

Ising spin-glass ground-state identification is a prime
example of an NP-hard problem [1] and a representative
example of a discrete optimization problem [2], where
even a two-dimensional Ising system with fields provides
a universal computational model [3].

Many physics-inspired approaches have been devel-
oped to tackle this problem. A prominent and general
family of methods, starting with the simulated anneal-
ing algorithm [4], employs thermal fluctuations introduced
by Metropolis-Hastings updates [5,6] within a Markov-
chain Monte Carlo (MCMC) paradigm. Rugged energy
landscapes pose significant challenges for local Monte
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Carlo updates, motivating elaborate schemes to navigate
distinct local minima. Those include parallel tempering
(PT) [7] to enhance thermal fluctuations; heuristic clus-
ter moves, such as the isoenergetic or Houdayer cluster
move [8,9]; and nonequilibrium Monte Carlo with inho-
mogeneous temperature distribution over identified sur-
rogate problem backbones [10]. Alternative approaches
to overcoming the limitations of local updates include
subgraph-based methods, which leverage fixed-treewidth
substructures to improve sampling efficiency [11]. Addi-
tionally, highly optimized implementations of simulated
annealing for Ising spin glasses have been demonstrated
to achieve significant performance gains through multispin
coding, particularly targeting the previous graph geometry
of D-Wave quantum annealers, i.e., Chimera graphs [12].

An alternative approach under development employs
quantum fluctuations within the quantum annealing
paradigm [13,14]. In particular, quantum annealers (QAs)
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developed by D-Wave are a prime example of a quan-
tum Ising machine, being a dedicated solver for Ising spin
glasses on quasi-two-dimensional (quasi-2D) geometries.
A scaling advantage of quantum annealing over stan-
dard Monte Carlo methods remains a possibility, based on
analysis of some finite random problems [15–17]. In an
idealistic QA, the time evolution is deterministic, with ran-
domness entering while sampling from the final evolved
state. Generally, there are no guarantees that this provides
fair sampling from the low-energy manifold. For suffi-
ciently fast quenches, the D-Wave QA was shown to give
results consistent with the coherent Schrödinger dynamics
[18,19]; however, for the slower quenches used for opti-
mization in this article, decoherence affects the outputs of
the quantum simulator [20], adding to the randomness of
the results.

Classical Ising machines include a recently developed
simulated bifurcation machine (SBM) [21–23]. This maps
the discrete Ising problem to a continuous system under-
going dissipative and chaotic dynamics governed by ordi-
nary Hamilton equations. Stationary states of this process,
after the final discretization of continuous variables, corre-
spond to local minima of the original problem. The system
evolves from a set of random initial states leading to mul-
tiple trajectories, simulations of which can be parallelized
efficiently.

Tensor networks (TNs) provide an alternative, typically
deterministic, approach to studying the properties of many-
body systems [24–28]. In particular, they give a compact
representation of the partition function of a classical low-
dimensional spin system at arbitrary temperature [29], with
information about marginal configuration probabilities fol-
lowing from (approximate) tensor-network contractions.
The underlying NP-hardness of the problem manifests
itself in the difficulty of performing the contraction [30].
Nevertheless, we can turn a TN into an optimization solver.
In particular, Ref. [31] combined approximate tensor net-
work contraction with a branch-and-bound approach, test-
ing this in the context of the previous quantum annealing
processor geometry called the Chimera graph. The lat-
ter consists of unit cells of eight spins forming a square
lattice, a natural geometry for established approximate ten-
sor network contraction techniques. Therein, the TN-based
approach showed an advantage over PT and QA in some
considered Chimera-geometry-native examples [31].

At the same time, TNs allow one to perform sam-
pling [32], which can be further enhanced in classical
systems via combination with MCMC methods, where TN
is used to provide nonlocal update candidates [33]. Very
recently, promising results have been reported [34] for
the application of hyperoptimized approximate contrac-
tion of tensor networks [35] to optimization problems with
rugged energy landscapes in two and three dimensions
(using a simplified approach where optimization problem
is addressed via direct sampling).

A promising alternative to working at finite temperature
is provided by tropical TN [36], considering the logarithm
of the partition function in the zero-temperature limit. This
is equivalent to a message-passing algorithm for ground-
state energy identification [37]; however, automatic dif-
ferentiation techniques applied in such TN contraction
can also produce the corresponding ground-state config-
urations. Nevertheless, this approach is currently limited
to the exact contraction of the network and optimization
problems with small treewidth.

This article explores the application of TNs for graph
geometries currently employed in D-Wave quantum
anneals, which exhibit significantly enhanced connectivity
over the previous generation processor and Chimera graph.
For instance, such a graph can fit a cubic 15 × 15 × 12 lat-
tice of dimers [15]. This poses significant challenges for
employing approximate TN contraction techniques, which
we tackle in this work. We aim to explore the limitations
and gain insights into the sources of failure of our deter-
ministic branch-and-bound TN approach, where increased
problem complexity puts stringent constraints on the qual-
ity of the results produced by our solver. We compare
this with representative examples of randomized algo-
rithms, a class more commonly employed in the context
of optimization.

The remainder of this article is organized as follows.
In Sec. II, we discuss the Ising optimization problems,
in particular, introducing the Pegasus and Zephyr graph
geometries in which we are primarily interested here.
Section III provides a comprehensive description of our
algorithm, including branch-and-bound search and the
construction and contraction of a projected entangled pair
state (PEPS) tensor network for graphs with large unit
cells. We comment on exploiting sparse tensor structures
and the variational zipper algorithm used in boundary
matrix product state (MPS) optimization. In Sec. IV, we
discuss the optional concept of local dimensional reduc-
tion, employing loopy belief propagation in this context. In
Sec. V, we collect the results, focusing on the ground-state
search and diversity of low-energy solutions. We bench-
mark our algorithm against the D-Wave QA and the SBM.
We end with a discussion on how and why the tensor
network approach is breaking in Sec. VI, followed by con-
cluding remarks in Sec. VII. In the Appendixes, we provide
additional details on the stability of our approach, as well
as other 2D graph geometries. Therein, we also discuss
further details of the SBM algorithm.

II. ISING PROBLEM

We focus on the problem of finding the low-energy
states of a classical Ising Hamiltonian [2],

H(sN ) =
∑

〈i,j 〉∈E
Jij sisj +

N∑

i=1

hisi, (1)
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where sN denotes a particular configuration of N binary
variables si = ±1. The problem instance is defined by the
set of real couplings Jij forming a graph E and local fields
hi. We will be using a notation in which we denote a
subconfiguration of the first n variables as

sn = (s1, s2, . . . , sn). (2)

Here, we are interested in quasi-2D graphs, particularly
those of relevance for current quantum annealing proces-
sors. D-Wave Systems has introduced two notable topolo-
gies in the realm of quantum annealing processors, named
Pegasus and Zephyr [see Figs. 1(a) and 1(c), respectively].
Pegasus and Zephyr represent a significant advancement
over previous Chimera topology, featuring a quasi-2D lat-
tice structure with improved connectivity and aiming to
reduce noise [38–40]. In particular, the available Pegasus
quantum processor, which we used as a reference, has 5616
qubits connected by over 40 000 couplers, where a typi-
cal qubit is connected to 15 different qubits. The Zephyr
topology prototype we employed in this work has 563
spins, with each typical qubit connected to 20 different
qubits, and plans to expand the size of the chip to approxi-
mately 7000 qubits. We provide further details on quantum
annealing experiments in the Appendixes.

III. TENSOR-NETWORK APPROACH

To address graph geometries with large unit cells, such
as Pegasus and Zephyr, using the TN-based approach,
we start by representing the Ising problem in Eq. (1) as
a generalized Potts Hamiltonian with a reduced number
of variables of larger dimension. To this end, we group
binary variables that form natural unit cells into clusters,
as depicted in Fig. 1 with red shapes. We group sets of
24 binary variables for Pegasus geometry and 16 variables
for Zephyr geometry, resulting in the generalized Potts

Hamiltonian

H(xN̄ ) =
∑

〈m,n〉∈F
Exmxn +

N̄∑

n=1

Exn . (3)

Here, F is a 2D square lattice with N̄ nodes; see Figs. 1(b)
and 1(d), where we indicate nearest-neighbor interactions
with blue lines and diagonal connections with green lines.
Each variable xn takes up to d values, with d = 224 for
Pegasus and 216 for Zephyr geometry (in the maximal
case when all qubits in the cluster are operational and
are employed in a particular Ising Hamiltonian of inter-
est). In Eq. (3), Exn indicates the intranode energy of the
corresponding binary-variable configuration, and Exmxn is
the internode coupling. Our Potts Hamiltonian can also be
considered as a factor graph [37], with interaction nodes
limited to one-body and two-body terms, and with xn
constituting variable nodes.

We note that not all the spins in each red group in
Figs. 1(a) and 1(c) interact with spins in neighboring
groups. This allows us to further compress the internode
energy matrices,

Exmxn = Ēx̄mx̄n , (4)

where we introduce the projected variable

x̄m = Pmn(xm), (5)

with Pmn projecting d configurations in the mth node
onto dmn unique subconfigurations for a subset of origi-
nal binary variables that are actually coupled with spins
in the nth node. Similarly, in the opposite direction, x̄n =
Pnm(xn). This is depicted in Fig. 2, together with the
resulting dimensions.

(a) (b) (c) (d)

FIG. 1. Graph geometries appearing in the current D-Wave processors. We show the interaction structures of the so-called Pegasus
graph in panel (a), here with 384 spins, and the Zephyr graph with 160 spins in panel (c). Black dots denote spins, and couplings
between spins are represented by gray lines. To apply the tensor-network approach considered in this article, we employ quasi-2D
structures for these graphs, with unit cells consisting of 24 spins for Pegasus and 16 spins for Zephyr, denoted by red lines in panels
(a),(c), respectively. We group the spins in each unit cell to arrive at a generalized Potts Hamiltonian in Eq. (3), defined on a square
lattice with the nearest neighbor (blue lines) and diagonal couplings (green lines) shown in panels (b),(d).
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(a)

(b) (c)

FIG. 2. Compressed interaction matrices in clustered Hamil-
tonian. The numbers of degrees of freedom in each cluster are
224 for Pegasus geometry and 216 for Zephyr geometry, which
translates to linear dimensions of Exmxn matrices in Eq. (3);
however, these can be significantly reduced by employing the
fact that there are spins in a given cluster that are not coupled
to any spin in a neighboring cluster. Projectors Pmn and Pnm

project local degrees of freedom in each cluster to the relevant
set of subconfigurations, limited to groups of interacting spins.
Following Eqs. (4) and (5), this gives compressed interaction
matrices Exm,xn , with linear dimensions for Pegasus and Zephyr
geometries shown in panels (b),(c), respectively.

A. Tensor networks for optimization problems on
quasi-2D graphs

We approach the problem of identifying low-energy
states—from 2N possible spin configurations—by translat-
ing it into the task of finding the most probable configura-
tions according to a Boltzmann distribution at an inverse
temperature β,

p(xN̄ ) = 1
Z

exp (−βH(xN̄ )), (6)

where Z is a partition function. To effectively distinguish
these low-energy states, we employ a branch-and-bound
strategy, as illustrated in Fig. 3.

The strategy involves sweeping through the system to
systematically build a set of high-probability configura-
tions, adding one Potts variable at a time. At each step,
we limit the number of partial configurations considered
to at most M , keeping the computational complexity of the
exploration process under control. This involves branching
a set of M configurations supported on the first n clus-
ters, xn, to include possible configurations in the (n + 1)th
cluster, resulting in d × M trial configurations. For the
subsequent step, we select M of those with the largest
marginal probabilities,

p(xn+1) = p(xn+1|xn) × p(xn), (7)

which are calculated employing the chain rule. Here, we
assume that variable indexing is consistent with the order

in which the nodes are explored during the search (which
can always be obtained with reindexing).

The efficiency of the exploration is greatly enhanced,
keeping M fixed, by exploiting the locality of the interac-
tions—namely, that the probabilities conditioned on partial
configurations xn depend solely on the border part of xn
directly interacting with the rest of the lattice,

∂xn = {
Pkl(xk) : 〈k, l〉 ∈ F , k ≤ n, l > n

}
. (8)

As such, we identify equivalent partial configurations xn,
which look the same from the point of view of the remain-
ing part of the lattice. Specifically, for a given configu-
ration xn, the conditional probability appearing in Eq. (7)
relies solely on the subconfiguration at the border ∂xn,

p(xn+1|xn) = p(xn+1|∂xn). (9)

This is used to merge configurations xn with identical
boundary subconfigurations ∂xn [see Fig. 3(d)], which
results in effective compression of the low-energy mani-
fold and improved performance of the algorithm. At the
same time, the merging process enables us to identify
low-energy excitation in the system as it reveals the most
probable subconfiguration (with the lowest energy for
a fixed boundary subconfiguration), treated as the main
branch, and low-energy excitations (spin-glass droplets)
above these partial ground states [see Fig. 4].

The branch-and-bound procedure is applied iteratively
until the last cluster, resulting in the ground-state candi-
date and, from the merging process, a set of excitations
that gives an insight into the geometry of a low-energy
manifold.

We also keep track of the largest discarded probability
during the optimization process pd, which gives an upper
bound for the probability of any discarded configuration.
Thus, if the highest retained probability, corresponding
to the state with the lowest identified energy, is larger
than pd, this would be sufficient evidence for ground-
state certification (for exact calculation of conditional
probabilities; it remains heuristic evidence for approxi-
mate tensor-network contractions). In practice, reaching
this condition proves to be infeasible in our examples,
as the large inverse temperature β required to facilitate
such a situation would make approximate tensor-network
contraction numerically unstable. Nonetheless, intermedi-
ate β values, where approximate contraction still works
reasonably well, are sufficient for obtaining good-quality
solutions in the considered examples. We discuss these
aspects in the following sections.

B. Construction and contraction of PEPS for graphs
with large unit cells

To employ the algorithm described in the previous
section, it is crucial to effectively compute the conditional
probabilities p(xn+1|∂xn) to apply the chain rule in Eq. (7).
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(a) (b) (c) (d) (e)

FIG. 3. Branch-and-bound algorithm. We translate the problem of identification of the low-energy configurations to the problem
of finding the most probable configurations according to a Boltzmann distribution at some inverse temperature β [see Eq. (6)].
We sweep the 2D system, processing row after row. At each step, we identify a set of M configurations for n clusters, xn, with
large marginal probabilities. In a single step of the sweep, depicted in panel (a), we use M configurations xn to identify M config-
urations xn+1, supported on one extra cluster. To this end, we branch xn configurations in panel (b) to include all possible values
in the (n + 1)th cluster [see panel (c)] and calculate their marginal probabilities p(xn+1). These marginal probabilities are deter-
mined from the approximate contraction of the PEPS tensor network representing the Boltzmann distribution, as illustrated in Fig. 6.
Next, we bound the set of candidate configurations in two steps. First, in panel (d), we employ locality of interactions in a 2D
lattice, grouping the states according to their subconfiguration, ∂xn+1, supported on a boundary with the remaining part of the
lattice, i.e., with clusters n + 2, n + 3, . . .. Only the most probable configuration for each unique boundary is retained for further
processing. Discarded configurations encode excitation in the system and can be recorded to map the low-energy spectrum of the
system, as depicted in Fig. 4. Finally, in panel (e), we retain the M most probable configurations xn+1, completing a single step of
the sweep.

This can be achieved by representing all probabilities using
a two-dimensional PEPS tensor network [29,41]. For a
classical system in Eq. (3), the construction of a thermal
state is exact and equivalent to the representation of its

partition function [29,41],

Z =
∑

xN̄

exp (−βH(xN̄ )), (10)

(a) (b)

(b́ )

(c)

FIG. 4. Excited states in the branch-and-bound algorithm. In each step of the sweep, we bound the set of candidate partial config-
urations, keeping the most probable ones for each considered unique boundary. We depict a single such configuration in the upper
part of panel (a), in which dots represent spins: a blue dot denotes a spin up and red a spin down. This is accompanied by a set of
low-energy excitations, shown in the lower part of panel (a), that do not modify the boundary spins. In panels (b) and (b′), we show the
merging process [step (d) in Fig. 3] of two spin configurations with the same boundary—highlighted in green. The one with a larger
marginal probability becomes the main branch, depicted in the upper part of panel (c). The difference, indicated by bold gray lines in
panel (b′), is added to the set of excitations above the main branch [lower part of panel (c)], together with excitations above (b) and
(b′) accumulated in the previous steps. To keep their number under control, we keep only those that are singly connected and with a
Hamming distance between any pair of them above a specified threshold.
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(a) (b)

(c)

FIG. 5. Representation of the partition function as a tensor net-
work. The partition function of a generalized Potts Hamiltonian
in Eq. (3) on a square lattice with nearest-neighbor and diagonal
interactions, panel (a), can be expressed as a contraction of a ten-
sor network depicted in panel (b), with individual tensors defined
in panel (c). Here, red dots denote site tensors, corresponding to
clusters in panel (a), with four virtual legs mediating the inter-
action structure and traced-out Hamiltonian degrees of freedom.
Square markers denote the exponents of the corresponding inter-
action matrices, purple dots show mediating tensors that carry
diagonal interactions, and triangles depict the configuration pro-
jectors in Eq. (5). The result is a PEPS tensor network on a square
grid [panel (b)] that is amenable to established tensor-network
contraction strategies (see Fig. 6).

which is depicted in Fig. 5. In addition to site ten-
sors carrying information about local energies and their
interaction structure with neighboring sites (red circles in
Fig. 5) and bond tensors encoding two-site interaction
energies (squares), we introduce mediating tensors (pur-
ple circles). The latter encodes diagonal interactions in
a tensor network defined on a square grid with nearest-
neighbor connections only. This construction is compati-
ble with standard approximate tensor-network contraction
techniques.

Finding the ground state of a general Ising spin-glass
problem is NP-hard [1]. In the tensor-network representa-
tion of spin-glass problems, this hardness manifests itself
in the PEPS tensor network being #P-hard to contract
exactly [30] (i.e., to extract information from). The higher
computational class than NP-hard reflects the fact that it
contains information about the entire spectrum, not just
the ground state. The exponential computational cost for
exact contraction motivates the use of approximate (heuris-
tic) contraction schemes, reducing the cost to polynomial
in lattice parameters.

(a)

(b)

FIG. 6. Calculation of conditional probabilities via approxi-
mate contraction of a PEPS tensor network. The calculation of
marginal probabilities of interest boils down to the calculation
of conditional probabilities p(xn+1|∂xn) which, up to normaliza-
tion, are represented by a tensor network in panel (a)—closely
related to the one in Fig. 5(b). Here, the gray diamonds project
the virtual degrees of freedom on a boundary ∂xn of a given
configuration xn. The (n + 1)th site tensor has an extra leg repre-
senting (untraced) physical degrees of freedom. In panel (b), we
systematically approximate the lower half of the network using
the boundary MPS approach (see Fig. 8), where we mark the cor-
responding parts of (a),(b) with gray boxes. This preprocessing
step is carried out once at the beginning of the calculation, being
independent of a specific configuration xn. Finally, the approx-
imate network in panel (b) is contracted numerically to exactly
retrieve the desired conditional probabilities.

In this work, we adopt the boundary MPS approach
[24,42], as illustrated in Fig. 6 in the context of a ten-
sor network representation of the conditional probability
in Eq. (7). Tensors in the gray box in Fig. 6(a) are approx-
imated in Fig. 6(b) by a boundary MPS (black dots) with
bond dimensions truncated to χ . For lattices with multiple
rows, boundary MPS approximations are obtained sequen-
tially row by row. In each step, a product of the boundary
MPS from the previous row and the transfer matrix formed
by the next row of tensors, having the structure of matrix
product operator (MPO), is approximated by a new bound-
ary MPS of limited bond dimension χ . We describe the
procedure we use in detail in Sec. III B 2. This calculation
of boundary MPSs is carried out once as a preprocessing
step of the algorithm, as they are shared by all p(xn+1|∂xn)

of interest. Finally, diagrams such as that in Fig. 6(b) are
viable for numerically exact contraction. In this way, infor-
mation from the entire lattice is included in the calculation
of probabilities.
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(a) (b)

(c) (d)

FIG. 7. Sparse structure of the PEPS tensor. The large bond
dimensions of the site and mediating tensors, which appear in
the representation of Pegasus and Zephyr geometries, make their
direct construction infeasible. We exploit the fact that in all cal-
culations—i.e., in the randomized singular value decomposition
(SVD), variational optimization in Fig.8, and contractions in
Fig.6—they appear as part of diagrams such as those in panels
(a),(c). In these diagrams, the constituent tensor and the result
of their contraction each have only one leg, corresponding to the
(huge) legs of the PEPS tensors. For the bond dimensions result-
ing from the Pegasus and Zephyr graphs, these diagrams can still
be contracted by employing the sparse structure of PEPS tensors
and GPU hardware acceleration. For instance, in panel (b), the
blue tensor and MPS gray tensors are projected [triangles are pro-
jectors in Fig. 2(a)] to a common physical space of a site tensor.
Here, they can be efficiently contracted along the connecting legs
of dimension χ , and local Boltzmann factors (red circle) can be
applied. Finally, the result is projected onto the remaining virtual
leg of the PEPS tensor (outgoing triangle). Similar manipulations
are performed in panel (d) for optimal contraction of diagrams
involving mediating tensors.

Execution of the above techniques for the tensor sizes
needed to encode the Ising Hamiltonian relevant to near-
term quantum annealing technology requires a dedicated
approach, which we describe below.

1. Employing sparsity of tensors

The sizes of tensors appearing in the TN representation
of marginal probabilities for Pegasus and Zephyr geome-
tries prevent their direct construction. Specifically, for a
site tensor, the bond dimensions Dl, Du, Dr, and Dd [see
Fig. 7(a)] in a full Pegasus graph are 218, 214, 214, and 218,
respectively, while in a full Zephyr graph they are 216, 28,
28, and 216 (the values might be permuted depending on
the direction from which the boundary MPS contraction of
a 2D lattice is done). Calculation of a diagram in Fig. 7(a),
which is the building block of all contraction algorithms
that we use, would scale as O(DlDuDrDdχ2) if the site
tensor were constructed directly, making such an approach
infeasible in practice.

A strategy to address this challenge is to leverage the
sparse structure of this tensor, as shown in Fig. 5(c). We
employ this in Fig. 7(b), which depicts an efficient strat-
egy to contract the diagram. First, the legs of the tensors to
be contracted with the legs of the site tensor are projected
back to the physical space of the site tensor of size d (trian-
gles). The virtual legs of those tensors are then contracted
using batched matrix multiplication at a numerical cost
of O(χ3d). Additionally, this step greatly benefits from
hardware acceleration on GPU. Nonetheless, it remains
the computational bottleneck for the Pegasus graph with
d = 224, which, together with available memory, limits the
feasible boundary MPS bond dimensions to approximately
χ = 10 [45]. Finally, the local energy term is applied, and
the physical space is projected by the last right-pointing
projector in Fig. 7(b), completing the contraction of the
diagram.

A similar approach is needed for operations involving a
mediating tensor, whose dimensions Dr, Dx′

, Dl, and Dx′′

[see Fig. 7(c)] are 214, 24, 218, and 28 for a full Pegasus
graph, and are all equal to 216 for the Zephyr graph. The
optimal contraction scheme employs the internal structure
of this tensor, shown in Fig. 7(d), where the bond dimen-
sions dmn′

, dmn, dmn′′
, dnm′

, dnm, and dnm′′
correspond to the

dimensions in Figs. 2(b) and 2(c). For the Pegasus graph,
they read 24, 212, 20, 20, 218, and 28, and for the Zephyr
graph, all are equal to 28. The specific order in which pro-
jectors, boundary tensors, and bond tensors get combined
in Fig. 7(d) depends on the specific values of those dimen-
sions and, hence, also on a graph or diagram rotation. For
a full Pegasus graph, the number of numerical operations
is O(226χ3). For a Zephyr graph, it scales as O(232χ3),
being a computational bottleneck for this lattice. Those
operations again benefit from GPU hardware acceleration,
although the available memory on the GPU and the size
of intermediary tensors appearing during the contraction
again limit feasible χ values to around 10 [45].

2. Variational zipper algorithm for boundary MPS

The construction of a boundary MPS, which we employ
in an approximate PEPS contraction, requires systematic
approximation of an MPO-MPS product by an MPS with
a limited bond dimension χ . A particular challenge here
is the bond dimensions of the MPO tensors (site and
mediating tensors); see the previous section.

To this end, we combine the zipper scheme of Ref. [46]
with the standard variational optimization of the result-
ing MPS, which aims to iteratively maximize its overlap
with the target MPO-MPS product [24]. The procedure is
depicted in Fig. 8. The zipper scheme applies MPO ten-
sors one at a time while gradually switching the canonical
form of the resulting MPS. This makes each singular value
decomposition (SVD) approximation of a tensor, repre-
sented by dashed boxes in Fig. 8(c), used to truncate the
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(a)

(c)

(b)

(d)

FIG. 8. Systematic approximation of the lower half of the PEPS lattice via boundary MPS. In panel (a), a boundary MPS for the
(k + 1)th row with bond dimension χ (blue triangles) is contracted with an MPO representing the kth row of the PEPS tensors (green
dots) and approximated by a new boundary MPS of bond dimension χ for the kth row (red triangles). To this end, we employ a zipper
scheme, where the PEPS tensors are attached sequentially, one at a time, from right to left. Panel (c) starts with the initial MPS in the
left canonical form [right(left)-pointing triangles represent left(right)-canonical MPS tensors; see panel (b)]. The first MPO tensor is
attached, and a tensor in the dashed box is approximated via SVD, retaining χ leading singular values. Here, the initial connecting
tensor, represented by a red rectangle, is a trivial unity with all bond dimensions equal to one. The procedure is repeated in subsequent
sites, with the MPS tensors to the left (right) of the connecting tensor in right (left) canonical form. This mixed canonical form makes
an SVD approximation locally optimal. The problems we consider in this article have huge MPO bond dimensions, which requires
resorting to randomized truncated SVD [43,44]. To increase the numerical stability, each step of a zipper procedure is followed by a
variational optimization [24] of a new MPS, maximizing the overlaps in panel (d).

bond dimension, globally optimal at each step of the zip-
per. To handle the MPO tensors’ bond dimensions related
to Pegasus and Zephyr geometries, we use a truncated
randomized SVD scheme [43,44] that directly targets the
desired number of dominant singular values and vectors.
This operates in a matrix-free way, meaning it does not
require an explicit construction of the decomposed tensor,
only a procedure that calculates its multiplication with a
trial vector from the left and right sites. These take the form
of diagrams such as in Fig. 7, allowing us to use the sparse
structures of MPO tensors.

Randomized SVD algorithms targeting a subspace of
singular values, while much faster and memory efficient
than full-rank SVD algorithms based on Householder
reflections [47], are numerically unstable and prone to
getting stuck in local optima. To mitigate this issue, we
conduct the truncation in two steps, targeting 2χ singu-
lar values with randomized SVD, which, after variational
refinement, are further truncated to the target χ singular
values. More importantly, each step of the zipper proce-
dure is followed by a sweep of variational optimization of
the instantaneous stage of the zipper procedure, as shown
in Fig. 8(d). To limit the computational effort, we can limit
the range of the variational sweep to a few tensors in the
vicinity of the instantaneous center of the zipper.

We have found the above procedure to be most stable,
allowing us to operate with χ values up to approximately
10 for the targeted lattices with the available resources
[45]. We have also tested a strategy in which a full zip-
per sweep was performed first to give the initial state for

subsequent variational optimization, as well as a strategy
in which only the variational optimization was used in
combination with a gradual increase in inverse tempera-
ture β. Both those approaches, however, resulted in worse
performance.

IV. LOCAL DIMENSIONAL REDUCTION

We additionally explore the combination of the
algorithm in Sec. III with local dimension reduction of
cluster degrees of freedom, which significantly reduces the
numerical cost of subsequent tensor-network contractions.
This is done by selecting the most probable states in each
cluster, where we approximate the marginal probabilities
of each Potts variable employing loopy belief propagation
(LBP) algorithm [37,48,49].

We follow the standard LBP formulation [37], incorpo-
rating within it the projectors in Eq. (5) to significantly
reduce the memory cost of the LBP representation for
problems with large local dimensions. This reduction is
essential for addressing the dimensions encountered in the
Pegasus and Zephyr geometries after clustering.

Specifically, the LBP procedure seeks to find the
marginal probabilities p(xn) of configurations xn in a clus-
ter n by iteratively updating messages from clusters to
edges and from edges to clusters. Such iterations converge
to exact results for problems defined on a tree. Much worse
performance is expected for lattices with loops, such as
those considered here; however, the results only serve to
select a fraction of the local degrees of freedom for each
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μ ν

(a) (b)

(c) (d)

FIG. 9. Local dimension reduction. To decrease the numeri-
cal cost of tensor-network contraction, we employ a loopy belief
propagation (LBP) algorithm to approximate the marginal prob-
abilities of each cluster variable and retain a given number of the
most probable (according to LBP) configurations in each clus-
ter. This substantially reduces the cost of a subsequent global
branch-and-bound search. An LBP can be rephrased as a simple
approximate contraction scheme of a tensor-network represent-
ing the partition function, such as in panel (a) [see Fig. 5(a)],
aiming at an approximation of local marginals in panel (b). Here,
black half-circles are boundary vectors (messages from edges to
clusters), approximating the influence of the rest of the lattice.
These are obtained via an iterative procedure shown in panels
(c),(d), where one sequentially updates, in panel (c), messages
from clusters to edges [boundary tensors represented by green
half-circles], and, in panel (d), messages from edges to clusters.
In our numerical experiments, we perform a fixed number of such
updates before the estimation of local marginal probabilities in
panel (b).

cluster, and as such, this approach is viable for testing. The
main steps of the procedure are outlined in Fig. 9 and can
naturally be interpreted as a form of approximate tensor
network contraction.

Below, we simplify the LBP formulation for general fac-
tor graphs [37], which can contain interactions between
arbitrary numbers of variables, to the case of at most two-
site terms appearing in Eq. (3). The messages from edges
to clusters, νmn(xn), where the cluster indices m and n
uniquely identify directional edges for two-site interac-
tions, are depicted as black semicircles in Fig. 9. These are
initialized as a uniform distribution, νmn(xn) ∼ 1, imply-
ing equal probabilities for all states. The messages from
the clusters to the edges of the graph, denoted by μmn(xm)

and represented as green semicircles in Fig. 9, follow the
update

μmn(xm) =
∑

Pmn(xm)=xm

exp (−βExm)
∏

m′∈N (m)\n

νm′m(xm),

(11)

as shown in Fig. 9(c). Here, N (m) indicates sites interact-
ing with site m, and we use projectors from Eq. (5), where
νm′m(xm) = νm′m(xm), corresponding to the definition of the
site tensor represented by red circles in Fig. 5. Subse-
quently, one updates the message from the edges to clusters
as

νmn(xn) =
∑

xm

exp (−βExnxm)μmn(xm), (12)

as depicted in Fig. 9(d).
After several such iterations (a fixed number or after

reaching convergence), we can approximate the marginal
probabilities of the spin configurations associated with
each cluster within the graph. In particular, the probabil-
ity of configuration xv is proportional to the product of all
messages originating from neighboring edges linked to the
respective cluster [see Fig. 9(b)],

p(xn) ∝ exp (−βExn)
∏

m∈N (n)

νmn(xn). (13)

For dimensional reduction, we select the desired number
of most probable states in each cluster according to such a
procedure.

We note that within the temperature range considered in
this study, belief propagation (BP) messages do not fully
converge, with the maximal change in messages during
iteration saturating at around 10−3. Hence, after reach-
ing saturation in convergence, messages from a predefined
number of iterations are used to select representatives of
each cluster. At sufficiently high temperatures (small β),
BP is expected to converge; however, such temperature
regimes are not practically relevant to the optimization
problems studied here. Finally, we note that the selection
based on local marginals may not identify local configura-
tions contributing to a globally optimal state.

V. RESULTS

In this section, we present three classes of instances
that we used for testing the algorithms of Secs. III and IV
and discuss the performance metrics we adopt. Finally, we
show the results for problems defined on the Pegasus and
Zephyr geometries. In addition to the TN-based algorithm
described in Secs. III and IV, all instances were executed
on the D-Wave quantum annealer and optimized using the
SBM algorithm [21–23]. In addition, we have collected
further evidence in the Appendixes, including problems
defined on a simple square lattice and a square lattice
with diagonals. Therein, we also show the dependence of
our algorithm’s performance on various parameters, most
notably the inverse temperature, β.
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TABLE I. Classes of problem instances considered in this
article.

Class Description

I Random couplings in [−1, 1].
II Class I + random local fields in [−0.1, 0.1].
III CBFM-P instances of Ref. [51] for Pegasus graph.
IV Tile planting instances of Ref. [52,53] for Pegasus graph.

A. Problem instances

We employ random instances with all available cou-
plings drawn from the same distribution, primarily focus-
ing on the Pegasus and Zephyr coupling graphs [50]
(see Fig. 1):

(a) Class I. We employ a uniform distribution in [−1, 1]
for Jij and set local fields hi = 0 [see Eq. (1)]. These
instances have a global reflection symmetry.

(b) Class II: Similar to Class I, instances are defined by
couplings drawn from a uniform distribution in [−1, 1].
We include small local fields with hi drawn from a uniform
distribution in [−0.1, 0.1], breaking reflection symmetry.

(c) Class III: We adopt the corrupted biased ferromag-
nets instances formulated on a Pegasus graph (CBFM-
P) of Ref. [51]. These are defined by discrete dis-
tributions with P(Jij = 0) = 0.35, P(Jij = −1) = 0.10,
P(Jij = 1) = 0.55, P(hi = 0) = 0.15, and P(hi = −1) =
0.85.

(d) Class IV: We use tile planting instances on a square
spin lattice, following the method outlined in Ref. [52,53].
The instances defined on a square lattices with system
sizes L = 10, L = 20, and L = 40 are subsequently embed-
ded into Pegasus graphs. After embedding, the numbers
of spins increase to 164, 721, and 3065, respectively. The
instances are constructed with a planted solution, meaning
that the ground state is known a priori. The complexity of
the planted instances is controlled by the probabilities p1,
p2, and p3, such that p1 + p2 + p3 ≤ 1. We set p2 = 1.0,
for which the instances are expected to be the hardest to
solve.

We summarize the considered problem classes in Table I.
The probability distribution defining instances in class

III was selected for Pegasus geometry through a trial-and-
error method to ensure that problems from this class are
challenging for classical algorithms. Specifically, Ref. [51]
presents extensive benchmarks comparing the time to solu-
tion between the D-Wave Advantage quantum annealer
and a selection of classical algorithms, including simulated
annealing, parallel tempering with isoenergetic cluster
moves, integer quadratic programming, and message pass-
ing (but not SBM). The study demonstrated that, for this
class and certain target approximation ratios, the quantum
annealer provides run-time benefits over a tested collection

of established classical methods. A recent comparison with
the SBM algorithm was performed in Ref. [54] on max-cut
problems, revealing the competitive performance of SBM.

B. Metrics: best energy, diversity of solutions

We use two fundamental performance metrics: the best
energy found and the diversity of identified low energy
configurations, both within the framework of time to solu-
tion.

In the first metric, we focus on the lowest energy
obtained with given resources, which we quantify using
solver runtime. We will be plotting a relative energy
difference above the best energy found,

dE = (E − Ebest)/2|Ebest|, (14)

where the reference energy Ebest is established by collect-
ing the results of all tested solvers when the ground truth
is unknown.

In the second metric, we probe the quality of sampling
of diverse approximate solutions of a spin-glass prob-
lem [55,56]. We summarize the idea behind the diversity
measure below. We focus on good-quality solutions with
energies within a given approximation ratio ar, that is,
the solutions for which dE ≤ ar. The goal is to select the
largest set of independent solutions from the available set
of such solutions. The size of the set provides a diversity of
solutions. We refer to two spin configurations, sN and s′

N ,
using the original spin variables, as independent if their
Hamming distance d is above a given threshold

d(sN , s′
N ) ≥ RN , (15)

where N is the number of spins and R ∈ [0, 1] is the rel-
ative distance threshold. Indeed, a large threshold value
makes it unlikely to transition between two such solutions
by relying on local updates. Below, we set R = 1/4 and
R = 1/2. For class I instances, we do not distinguish solu-
tions differing by a global reflection; i.e., we first flip some
solutions to ensure that they have the same value for the
first spin in all samples.

To compare the performance of the considered solvers,
we proceed as follows. We start with the estimation of the
ground-truth diversity Dtotal of a given problem instance.
To this end, we collect the solutions from all solvers and
search for the largest set of independent solutions within
given approximation ratio ar. This is equivalent to finding a
maximum clique (i.e., a subgraph of the analyzed graph in
which each pair of nodes is adjacent) in the graph for which
low-energy solutions form the graph’s nodes, and any two
low-energy states with a Hamming distance greater than
the threshold are adjacent. The maximum clique problem
is known to be NP-complete [57], and we approximate its
solution using a randomized heuristic approach [58]. Here,
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Dtotal is equal to the size of the set obtained in the above
procedure.

The obtained reference set of independent solutions is
then used to calculate the diversity of solutions D found
by each solver for a given problem instance. To this end,
we iterate over all low-energy solutions obtained by a
given solver and mark the reference independent solution
to which they are the closest. The diversity for the solver
is equal to the number of marked states.

C. Results of the ground-state search

Figure 10 shows the time to median approximation ratio
for 20 instances of class I for Pegasus geometries with
216, 1176, and 5376 spins, and Zephyr graphs with 332
and 563 spins. Analogous data for other instance classes
are collected in the Appendixes, where we observe similar
performance for instances in classes I–III. For the largest
considered problems in class IV, the TN algorithm outper-
forms QA and SBM in terms of the best energy found,
improving dE by a factor of 3 to 4.

In addition to full-space TN simulations, we additionally
conduct simulations with local dimensional reduction of
cluster degrees of freedom, as described in Sec. IV. Here,
we reduce the 224 cluster states to 220 and 216 states for
Pegasus instances, and from 216 states to 214 and 212 states

for Zephyr instances. Due to memory limitations, for the
Pegasus instances with 5376 spins, we only performed cal-
culations with local dimensional reduction to 216 states.
The parameter selection was performed separately for each
type of graph: an inverse temperature β = 0.5 was used
for the Pegasus instances, while β = 1.0 was used for
the Zephyr instances. We further show the influence of
β on the quality of the results in the next section and in
Appendix C.

For the smallest Pegasus graph in Fig. 10(a), TN simu-
lations with no dimensional reduction find the ground state
(for median instance). Employing dimensional reduction
to 216 prevents us from identifying the ground state in
some cases—we have checked that this is due to dimen-
sion reduction that no longer supports the ground state
configuration, showing the limitations of the LBP pre-
processing. For larger Pegasus lattices in Figs. 10(b) and
10(c), the best energies reached are systematically below
the approximation ratio of 10−2, both with and without
dimensional reduction. We are not, however, typically able
to find the ground state in those cases. The outcome of the
TN procedure depends on the edge of the quasi-2D lattice
from which the branch-and-bound is initiated, as indicated
by the improvement in the best results after collecting
data from various trials. This suggests deficiencies in the
stability of the approach for feasible execution parameters.
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FIG. 10. Time to approximation ratio. We focus on class I instances for Pegasus and Zephyr for a selection of system sizes. We
compare the considered solvers in terms of the time needed to reach a given quality of solution, quantified by energy above the best
identified one, selected among D-Wave QA (orange and gray), SBM (dark blue), and TNs. Here, we show the median based on 20
instances. In addition to full-space tensor-network results (green), we plot results obtained with dimensional reduction of local cluster
degrees of freedom: truncation from 224 states for Pegasus to 216 states (blue) and 220 states (red), and truncation from 216 states for
Zephyr to 212 states (brown) and 214 states (pink). The points for QA and SBM are from 10, 100, 1000, 10 000, and all available
samples (trajectories). Here, we estimate QA time as annealing time plus 100 µs. SBM and TN times are for a single GPU [45].
While the TN algorithm is in principle deterministic, it can be executed starting from different corners of a quasi-2D lattice (8 lattice
transformations in total), and the points for TN correspond to trying 1, 2, 4, and 8 such transformations. Here, we used β = 0.5 for
Pegasus and β = 1.0 for Zephyr instances, MPS bond dimension χ = 8, and the maximal number of branches in the search M = 1024.
The error bars of the median follow from bootstrapping.
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The Zephyr geometry proves to be more challenging to
our approach [see Figs. 10(d) and 10(e)]. In some cases, we
observe a trade-off between TN contraction stability and
the degree of dimension reduction. While overall, the best
results are obtained for no reduction, there are instances
where the best result, even the ground state, is identified
only after a preceding TN-based branch-and-bound search
with a local dimensional reduction. We expect that the drop
in performance of our TN-based approach for the Zephyr
geometry, as compared to Pegasus, is due to the larger frac-
tion of diagonal interactions in the former and its impact on
contraction stability. In Appendix B, we show the results
for an Ising model defined on a plain square lattice and
a square lattice with additional diagonal terms, where TN
produces the best solutions.

Finally, Fig. 10 includes the results of QA and SBM.
Both approaches operate on a timescale that is orders of
magnitude smaller than TN and typically allow us to iden-
tify the ground state. The probabilistic nature of these
algorithms makes the operation time roughly proportional
to the number of samples, with 104 samples typically suf-
ficient to identify the ground state in our examples. In
contrast, the TN algorithm is deterministic and requires
completing a systematic sweep through the system to
return all identified solutions in one go.

D. Diversity of solutions

Figure 11 shows the time to median diversity ratio cal-
culated for the same set of instances as in Fig. 10. Here, we
focus on a large distance threshold R = 1/2, where distinct

solutions differ by at least half of the spins, and approxima-
tion ratio ar = 0.01. Other classes of instances, as well as
the data for distance threshold R = 1/4, are collected in the
Appendixes.

For R = 1/2, all solvers provide a comparable level of
sampling fairness, cross-checking that they successfully
explore distinct regions of the low-energy problem man-
ifold; however, for R = 1/4 (see Appendix A), QA and
SBM obtained a significantly larger number of diverse
states than the TN approach, which outputs similar num-
bers as for R = 1/2 (operating with M = 1024 in the
branch-and-bound search). This may be related to the fact
that the D-Wave machine and SBM generally yield orders
of magnitude more states in their results (equal to the num-
ber of samples) than the TN approach, which is limited by
the branch-and-bound search width M . As we relax the cri-
terion for diverse states by decreasing R, this quantitative
advantage naturally translates to more diverse states being
found.

VI. CONTRACTION STABILITY

To diagnose the sources of limitation in the TN
approach, we now focus on the smallest problem defined
on the Pegasus graph with 216 spins in class I. We
test a range of inverse temperatures β, boundary MPS
bond dimensions D, and adopted numerical precisions. We
employ local dimension reduction to 220 to expand the
available range of D (we verify that ground states remain
supported in reduced spaces). For clarity, in this section,
we adopt a metric that tests whether a given algorithm run
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FIG. 11. Time to diversity ratio. We show the time needed to reach a given median fraction of diverse solutions within ar = 0.01
for class I instances of the Pegasus and Zephyr graphs. The total diversity of each instance is obtained by combining the outputs of all
considered solvers. The median among 20 instances is annotated as Dtotal in each panel. We focus on the relative distance threshold
R = 1/2, which gives sets of independent solutions consisting of only a few spin configurations, and all three solvers are able to
identify such varying states. The simulation parameters are the same as in Fig. 10.
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has found the ground state. The resulting success rate is
shown in Fig. 12(a), collecting data for 20 instances and
all possible rotations of each instance.

A general observation is that there is a trade-off between
the resolution offered by the branch-and-bound proce-
dure (where higher β is desired) and the stability of TN
contraction (where smaller β allows for more precise cal-
culation of marginals). Indeed, for the smallest values of
β < 0.25, the procedure cannot identify the ground state,
as the branch-and-bound procedure (here, with M = 1024)
gets stuck in local minima—independent of contraction
parameters.
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FIG. 12. Contraction stability. We focus on a minimal Pega-
sus example with 216 spins. In panel (a), we show a percentage
of algorithm runs where the ground state has been identified,
calculated from 20 problem instances and all right rotations (con-
traction directions) for each instance. We identify the existence
of optimal inverse temperature β, giving a trade-off between the
branch-and-bound resolution and TN contraction failures. We
test the influence of the boundary MPS bond dimension D and
numerical precision on the latter. In panel (b), we illustrate the
truncation error, estimated from the smallest retained singular
values at the worst MPS cut (the median over all instances is plot-
ted). In panel (c), we show a percentage of runs where repeated
execution gave different outcomes (with respect to finding the
ground state). This can be attributed to randomized SVD being
employed in the algorithm and the inability of variational MPS
optimization to correct the resulting fluctuations.

Those local minima can be avoided by employing larger
β values, where, however, the failure of the procedure
can be attributed to TN contraction failure. From this per-
spective, the metric we adopt here provides a direct probe
of the stability of the contraction at larger β. We note
that the PEPS tensors we use are built from non-negative
elements. In general, this improves contraction stability
[59] (at the very least, this minimizes numerical-precision
errors related to subtracting numbers of similar magni-
tude). Negative tensor elements, however, do appear in
approximate boundary MPS.

Interestingly, in the considered range of parameters, the
numerical precision—i.e., a default 64-bit precision or a
lowered 32-bit precision used during contraction—does
not appreciably affect the results (although for 32-bit pre-
cision, some underlying numerical operations break for
β ≥ 3). This can be understood from Fig. 12(b), where
we show the truncation accuracy, measured by the small-
est retained singular value of boundary MPSs at the worst
cut (the cut with the largest such singular value). For
β < 3, 32-bit precision is sufficient to represent those val-
ues for the tested D. We can also see, from the plots at
fixed D, that with increased β, the singular values van-
ish more quickly. This indicates that numerical precision
should ultimately become an issue for the largest β, desired
from the perspective of branch and bound.

Finally, we identify that the procedure failure for the
largest β value is closely tied to randomized truncated
SVD [43,44], which we employ in the calculation of
approximate boundary MPSs. Indeed, while the branch-
and-bound procedure, in principle, is deterministic, we see
that employing randomized SVD can lead to different out-
comes for repeated algorithm runs (with all parameters
otherwise fixed). In Fig. 12(c), we plot a percentage of
cases where two repeated executions of the algorithm gave
different outcomes (in terms of our metric focusing on
ground-state identification; the instability would be even
more pronounced if we compared obtained states). Such
an instability is marginal for the smallest values of β and
the smallest D = 4; however, the percentage of unstable
runs becomes significant for larger values of β and D.

This indicates that the randomized SVD employed in
boundary MPS compression results in local optima that
the one-site variational overlap maximization procedure
cannot escape (see Sec. III B 2). This issue becomes par-
ticularly severe when singular values vanish quickly, with
a few dominant ones differing by orders of magnitude—as
for D ≥ 8 at the largest β in Fig. 12. This shows that a
stable procedure to optimally identify boundary MPSs (or,
more broadly, contract the network) plays a critical role
beyond basic parameters like the bond dimension D.

The adoption of randomized SVD and variational opti-
mization of boundary MPSs limited to one-site updates is
a consequence of the huge dimensions of local spaces and
the resulting PEPS bond dimensions. These appear difficult
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to avoid in the optimization problems we focus on in this
article. Any improvement in the randomized SVD perfor-
mance should translate to improved quality of the results
from our TN procedure. This also partially explains the
good performance of the algorithm for the Chimera graph
in Ref. [31], where standard SVD—and more reliable ini-
tialization of boundary MPS optimization—are available,
allowing for larger β values. Nevertheless, we observe
that the hardness of contraction grows with lattice con-
nectivity. Typically, the TN approach performs reasonably
well for a square lattice, but its performance declines with
increased connectivity (including diagonal couplings in a
quasi-2D graph). Zephyr seems more complicated than
Pegasus, which, in turn, is harder than Chimera or a square
lattice.

VII. DISCUSSION

In this work, we implemented a TN-based branch-and-
bound search algorithm to identify low-energy states of
quasi-2D spin-glass problems. We focused on optimization
problems defined on Pegasus and Zephyr graphs, which are
currently realized in the D-Wave QA.

We compare the quality of solutions output from our
approach with those from the QA and SBM algorithms.
The latter two, which can be considered examples of ran-
domized algorithms, operate on approximately 2 orders of
magnitude smaller timescales and, via sampling, provide
denser coverage of the low-energy solutions manifold for
the considered random problems. The deterministic nature
of our branch-and-bound approach likely contributes to the
reduced expressiveness of sampling, suggesting a possible
route for future improvements of the method.

TN operates best in low-dimensional systems, and in
this article, we execute them for problems on the verge
of their practical applicability. The limitation to low-
dimensional systems is shared by the QA, as we focus
here on optimization problems that use the entire interac-
tion graph of the existing hardware. SBM, however, is not
limited by such considerations and can be executed on a
fully connected graph.

TN algorithms, including our approach, typically have
a sequential nature, making them hard to parallelize and
affecting the total execution time for a single problem
instance. This aspect is shared by a QA, which pro-
duces one classical sample at a time. Nonetheless, a single
annealing execution time of the order of a millisecond
makes it competitive in outputting thousands of samples
(though the access time to the online system might add
significant overhead). In comparison, the SBM algorithm,
like MCMC approaches, is easily parallelizable, allowing
for multiple trajectories to be calculated simultaneously,
efficiently using hardware accelerators such as GPUs.

Nevertheless, our TN approach is not limited to Ising
problems, like the two latter solvers. It can be directly

employed for generalized Potts problems (or equivalently,
Random Markov Fields models) defined on king’s graphs
[see Fig. 1(d)].

We identify the limitations of our approach related to
the huge bond dimensions appearing in the TN represen-
tation of marginals for the families of problems we focus
on and instabilities in approximate boundary MPS contrac-
tion schemes. The performance of our approach might be
further improved by introducing additional heuristic TN
gauge transformations to stabilize the contraction, which
we do not explore in this work.

Our results also illustrate that optimization problems
can be employed as stringent tests of the performance of
various approximate TN contraction schemes, where the
quality of obtained low-energy states directly probes the
quality of the contraction, which is a #P-hard problem in
general.

One emerging area is the development of a hetero-
geneous high-performance quantum-classical computing
architecture with adaptive graph partitioning subroutines
[60]. This framework could consist of different kinds of
coprocessors working in concert to accelerate the sam-
pling of different subgraphs or complementary areas of
configuration space. This paradigm of hybrid comput-
ing could include quantum accelerators (analog quantum
annealers or digital quantum approximate optimization
algorithms), conventional classical computing accelerators
(CPU and GPU), and unconventional classical processors
(in-memory [61] and/or probabilistic accelerators [62]).
We envision that TN approaches can also be incorporated
as specialized deterministic quantum-inspired solvers for
sampling low-dimensional subgraphs within such hetero-
geneous frameworks.
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APPENDIX A: AUXILIARY RESULTS

In Fig. 13, we show the time to approximation ratios
for class II, III, and IV instances achieved by all exam-
ined solvers: D-Wave QA, SBM, and the TN approach.
In contrast to classes I, II, and III, which exhibit simi-
lar performance trends, class IV instances demonstrate an
advantage in energy results achieved by the TN approach.
Although TN outperforms both D-Wave QA and SBM in
terms of energy for instances with 721 and 3065 spins, it
fails to identify their ground states.

The time to diversity ratios for classes I, II, III, and
IV with the distance thresholds R = 1/2 and R = 1/4 are
shown in Figs. 14 and 15, respectively.

APPENDIX B: SQUARE LATTICE

To illustrate our motivations for using TN in optimiza-
tion problems, we present results for class I instances on a

square lattice with one spin per lattice site and a king’s
lattice generated by adding diagonals to the square lat-
tice. For reference, we conducted simulations using SBM.
The results, focusing on best energies, are presented in
Fig. 16. For these geometries, the TN-based technique
consistently finds states with lower energies than SBM.
The king’s lattice proves harder for TN than the square
lattice. Indeed, for the square lattice, nearly all runs for
all instances and lattice transformations for β = 4 and
β = 8 result in the ground state (beyond the median for
β = 4 shown in Fig. 16). For the king’s lattice, the suc-
cess rate in identifying the ground state for a 50 × 50
lattice falls to around 90% for β = 4, and around 50%
for β = 8.

The diversity of solutions (vastly different, with R =
1/2) found by both solvers is comparable, as shown
in Fig. 17, indicating that both solvers are capable of
sampling from the same distant parts of the low-energy
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FIG. 13. Time to approximation ratio. Here, we show the results for instances in classes II, III, and VI for Pegasus and Zephyr
geometries for a selection of system sizes. The data complement the results in Fig. 10 and were obtained using the same simulation
parameters. We show the median based on 20 instances.
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FIG. 14. Time to diversity ratio for R = 1/2. We show the time needed to reach a given fraction of diverse solutions within ar = 0.01
and R = 1/2 for instances in classes II, III, and IV, complementing the data in Fig. 11.

manifolds; however, TN no longer has an advantage in that
metric.

Finally, we also tested the zipper boundary MPS
contraction procedure using randomized SVD (see
Sec. III B 2) against a more standard procedure where the
entire MPO (related to a PEPS row) is applied first to
the previous boundary MPS, the result is truncated using
full-rank SVD, and fine-tuned variationally. The quality of
the results obtained from both procedures turns out to be
similar in these problems.

APPENDIX C: DECOMPOSITION OF PEPS INTO
MPOS, OPTIMAL β, AND STABILITY TEST

We can consider various types of decomposition of
the PEPS network into MPOs, as shown in Figs. 18(a)
and 18(b) with pale-blue boxes. All the results presented

in this article employ the decomposition in Fig. 18(a).
Here, we compare the influence of such decomposition
using a single instance in class I on the Pegasus graph
with 1176 spins as an example. At the same time, we
probe various inverse temperatures β. In Fig. 18(c), we
show the relative energy above the ground state for runs
using all eight lattice rotations. We observe weak sensi-
tivity of the results to both the decomposition and β. All
our results in the main text use β = 0.5 for the Pega-
sus graph. Based on a similar analysis, we decided on
β = 1.0 for instances defined on the Zephyr graph. In
Fig. 18(d), we show another metric indicating contraction
stability. Specifically, we compare the value of the partition
function Z following eight lattice rotations (thus, perform-
ing boundary-MPS contraction of the PEPS network from
various edges of the lattice). Figure 18(d) shows the stan-
dard deviation among the eight obtained values for each
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FIG. 15. Time to diversity ratio for R = 1/4. We show the data for all four instance classes and approximation ratio ar = 0.01,
complementing similar results in Figs. 11 and 14 for R = 1/2. For large system sizes, the fraction of diverse solutions identified
by TN becomes negligible compared to the two other solvers, where the limited available width of the branch-and-bound procedure
(M = 1024) apparently allows identifying only a small fraction of independent solutions for Dtotal in the hundreds. The simulation
parameters are the same as in Fig. 10.
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FIG. 16. Time to approximation ratio for (a) class I instances on a square lattice and (b) a king’s lattice (square lattice with diagonals)
for a selection of system sizes. As in Fig. 10, we show the median based on 20 problem instances. The best energies Ebest have been
chosen from the results of the SBM and TN algorithms. For TN, we show data for bond dimension χ = 16, the maximum number of
states considered during the search set to M = 256, and inverse temperature β = 4.0.

β and decomposition. The decomposition in Fig. 18(a)
appears more stable within this metric for the lowest val-
ues of β, with the deviation growing systematically as β

increases.
Finally, we focus on dimensional reduction based on

LBP and how the results depend on β. The data are pre-
sented in Fig. 19, where we perform simulations for the
same single instance as in Fig. 18 above. In principle, the
LBP procedure and TN branch-and-bound algorithm do
not have to employ the same β, and here we probe vari-
ous combinations of βBP and βalgorithm (in the main article,
they are set to the same value). The overall consistency of
the results seems mostly influenced by βalgorithm.

APPENDIX D: SIMULATED BIFURCATION
MACHINE

Building upon the concept of quantum adiabatic opti-
mization using a network of nonlinear quantum oscillators,
the simulated bifurcation machine (SBM) leverages the
phenomenon of bifurcation within a classical nonlinear
system governed by Hamilton’s equations of motion [22]:

q̇i = ∂Hcl

∂pi
= a0pi,

ṗi = −∂Hcl

∂qi
= − [

q2
i + a0 − a(t)

]
qi + c0�(qi),

(D1)
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FIG. 17. Time to diversity ratio for (a),(b) class I instances on a square lattice and (c),(d) a king’s lattice for the distance threshold
R = 1/2 and approximation ratio ar = 0.005. The simulation parameters are the same as in Fig. 17.
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FIG. 18. The PEPS tensor network can be decomposed into MPOs in many ways, as shown in panels (a),(b) with pale-blue boxes.
In panels (c),(d), we focus on a single instance in class I for the Pegasus graph with 1176 spins. Panel (c) displays the energy obtained
by the TN solver above the best energy identified for this instance. For each β and decomposition, we show the median from eight
runs of the algorithm using different rotations of the lattice (effectively performing the search and contraction from various corners of
the lattice). The best and worst results are indicated by error bars. Panel (d) focuses on the stability of contraction, using the partition
function as the metric, and compares the results obtained for eight lattice rotations.

where �(qi) = ∑N
j =1 Jij qj + hi, and

Hcl = a0

2

N∑

i=1

p2
i +

N∑

i=1

(
q4

i

4
+ a0 − a(t)

2
q2

i

)

− c0

N∑

i=1

⎛

⎝hiqi + 1
2

N∑

j =1

Jij qiqj

⎞

⎠ , (D2)

in which J and h are defined in Eq. (1).
This system can be interpreted as particles with mass

1/a0, positions qi, and momenta pi, moving within a time-
dependent potential and interacting through Ising-like cou-
plings. The constants a0 and c0 are hyperparameters (in this
work, we set a0 = 1 and c0 = 1/λmax, where λmax denotes
the largest eigenvalue of J ), while a(t) is a continuous
(here linear) increasing function of time that drives the

system across a bifurcation point occurring approximately
when a(t) = a0. Beyond that point, the energy landscape
governing the system’s evolution approximately encodes
the local minima of the Ising term, driving particles to
move toward low-energy solutions. The final (discrete)
solutions are then obtained as si = f (qs

i ), where qs
i is the

steady state of (D), and f is taken as a sign function, for
simplicity.

To mitigate errors resulting from the relaxation of
binary variables to continuous ones, a modified version
of the SBM (which was used in this work) was pro-
posed in Ref. [23]. Therein, the nonlinear term, q4

i , was
replaced with perfectly inelastic walls at |qi| = 1, and
the Ising contribution to the dynamics is discretized.
Specifically, the term

∑N
j =1 Jij qj in Eq. (D) is substituted

with
∑N

j =1 Jij sign(qj ). These adjustments ensure that the
dynamics can be halted when a(t) = a0, with the system
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FIG. 19. Influence of inverse temperature on the stability of the results using LBP for dimensional reduction, where we indepen-
dently change βBP in LBP and βalgorithm in the TN branch-and-bound algorithm. We consider the same single instance and the same
performance metrics as in Figs. 18(c) and 18(d). We use LBP to truncate the number of states in each node from 224 to 216. For better
visibility of the data on the graph, we spaced out the data for different temperatures βBP.
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TABLE II. Physical properties of the D-Wave Advantage_system6.1 machine and Advantage2_prototype1.1.

Parameter Advantage_system6.1 Advantage2_prototype1.1

Qubits 5616 563
Couplers 40135 4790
Qubit temperature (mK) 16.0 ± 0.1 13.9 ± 1.0
MAFM (pH)a 1.554 0.582
Lq (pH)b 382.180 142.920
Cq (fF)c 118.638 169.388
Ic (µA)d 1.994 4.083
Average single-qubit thermal width (Ising units) 0.221 0.117
FM problem freezeout (scaled time) 0.073 0.015
Single qubit freezeout (scaled time) 0.616 0.619
�i

CCJJ (�0)e −0.624 −0.686
�

f
CCJJ (�0)f −0.723 −0.766

Readout time range (µs)g 18.0 to 173.0 15.0 to 48.0
Programming timeh (µs) ∼14200 ∼5500
QPU delay time per sample (µs) 20.5 21.0
Readout error ratei ≤0.001 ≤0.001

aMaximum available mutual inductance achievable between pairs of flux-qubit bodies.
bQubit inductance.
cQubit capacitance.
dQubit critical current.
eInitial value of the external flux applied to qubit compound Josephson-junction structures at the start of an anneal (s = 0).
fFinal value at the end of an anneal (s = 1).
gTypical readout times for reading between one qubit and the full QPU.
hTypical for problems run on this QPU. Actual problem programming times may vary slightly depending on the nature of the problem.
iError rate when reading the full system.

residing in a local minimum. In general, there is no guaran-
tee that f maps qs

i onto the ground state of (1), sg
i . Finding a

function f (if one exists) that ensures this mapping remains
an open problem.

The differential Eq. (D) are separable with respect to
positions qi and momenta pi. This allows for numer-
ical integration using the simple yet stable symplectic
Euler method, which can also be efficiently implemented
on GPUs. Furthermore, the chaotic nature of the SBM
equations implies sensitivity to initial conditions. Since
each simulation is independent, multiple (random) starting
points can be evolved simultaneously, enhancing efficiency
and enabling extensive parallelization.

APPENDIX E: QUANTUM ANNEALING DEVICES

D-Wave reference results for the Pegasus instances
were obtained using Advantage_system6.1, while Zephyr
instances were solved on Advantage2_prototype1.1. The
properties of both machines are detailed in Table II.
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