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The ground state of the one-dimensional Bose-Hubbard model at unit filling undergoes the Mott-superfluid
quantum phase transition. It belongs to the Kosterlitz-Thouless universality class with an exponential divergence
of the correlation length in place of the usual power law. We present numerical simulations of a linear quench
both from the Mott insulator to superfluid and back. The results satisfy the scaling hypothesis that follows from
the Kibble-Zurek mechanism (KZM). In the superfluid-to-Mott quenches there is no significant excitation in
the superfluid phase despite its gaplessness. Since all critical superfluid ground states are qualitatively similar,
the excitation begins to build up only after crossing the critical point when the ground state begins to change
fundamentally. The last process falls into the KZM framework.
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I. INTRODUCTION

The study of the dynamics of phase transitions started with
the question posed by Kibble [1,2]. He noted that, in the rapidly
cooling post–big-bang universe, phase transitions must lead
to disparate local choices of the broken symmetry vacuum.
The resulting mosaic of domains with independently chosen
vacua will in turn precipitate formation of topological defects
with observable consequences. For instance, Kibble theorized
that the presently observed cosmological structures have been
seeded by cosmic strings—an example of such defects.

While the original estimate [1] of defect density was
incorrect, as it relied on an equilibrium argument [3] (hence,
densities did not depend on the phase transition rate), the key
question—whether transitions leave relics such as topological
defects in their wake—can be also posed in the condensed-
matter setting and studied in the laboratory. The theory [4–6]
developed to estimate defect density for the second-order phase
transition relies on their nonequilibrium nature but also on
the universality class of the transition: It uses equilibrium
critical exponents to predict scaling of the density of defects
and other excitations with the quench time scale. The size of
domains within which symmetry breaking can be coordinated
is given by the size of the “sonic horizon” that estimates
how far the local choice of the broken symmetry can be
communicated (and plays a similar role as the causal horizon
used by Kibble [2] to set lower bounds on defect density).

The usual estimate of the sonic horizon size relies on a
power-law scaling of the relaxation time and the healing length
with a distance from the critical point that is characterized
by the dynamical and correlation length critical exponents z

and ν. A characteristic time scale t̂ ∼ τ
zν/(1+zν)
Q and a length

scale ξ̂ ∼ τ
ν/(1+zν)
Q are predicted, where the quench time τQ

quantifies the rate of the transition. The correlation length
ξ̂ determines the number of excitations as a function of τQ.
The Kibble-Zurek mechanism (KZM) has been confirmed by
numerical simulations [7–22] and by experiments [23–40] in a
variety of settings, with most recent results providing evidence
of the KZM scaling laws [33,34,41–47]. Refinements and
extensions of KZM include phase transition in inhomogeneous
systems (see [48] for a recent overview), generation of winding
numbers in the limit when flux trapping is a rare event [29] (and
KZM scaling must be suitably adjusted [49]), and applications
that go beyond topological defect creation (see, e.g., [50–53]).
Recent reviews related to KZM are also available [54–58].

In this paper we consider a zero-temperature quantum phase
transition. Despite important differences with respect to ther-
modynamic transitions—where thermal rather than quantum
fluctuations act as seeds of symmetry breaking—the KZM
can be generalized to quantum phase transitions [22,59–76];
see also [56–58] for reviews. The quantum regime was also
addressed in some of the recent experiments [46,47,77–81].

Recently a scaling hypothesis that involves both space and
time was proposed [22,82,83] as a generalization and extension
of the predictive power of KZM, though some of its basic
ingredients were known from the beginning [6,53,84–86].
Since in the adiabatic limit, when τQ → ∞, both scales t̂ and ξ̂

diverge, they should become the only relevant time and length
scales in the regime of low frequencies and long wavelengths.
This in turn suggests a dynamical scaling hypothesis, similar
to the (static) one in equilibrium phase transitions, that during
the quench all physical observables depend on a time t

through the scaled time t/t̂ and on a distance x through the
scaled distance x/ξ̂ . What makes it really powerful is the
fact that the two scales are not independent: t̂ ∼ ξ̂ z. This
space-time renormalization hypothesis was confirmed in a
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precise experiment [47] where it proved useful in organizing
the experimental data. In the following we also find it useful
in organizing our numerical results.

In this paper we consider the Mott-superfluid quantum
phase transition in the one-dimensional (1D) Bose-Hubbard
model that belongs to the Kosterlitz-Thouless universality
class. This problem was touched upon in Ref. [87] where
it was argued that, since the correlation length diverges
exponentially near the critical point, one cannot ascribe a
definite scaling exponent w to ξ̂ ∼ τw

Q except for w = 1 in
the limit of exceedingly slow τQ that are beyond any realistic
experiment. However, when the range of τQ is restricted to
one or two orders of magnitude, then an effective scaling
ξ̂ ∼ τw

Q with an effective exponent w < 1 can be a convenient
approximation. In this paper, we readdress the problem, this
time with fully fledged numerical DMRG simulations. Like
in a real experiment, there are limitations that restrict the
range of available quench times and the KZ scaling hypothesis
with effective exponents is a convenient approximation. We
simulate linear quenches from the Mott insulator to superfluid,
where the range of correlations builds up as the tunneling
rate between nearest-neighbor sites is turned on. The spatial
profile of the correlators and their time dependence satisfies
the scaling hypothesis.

We also simulate reverse linear quenches from the super-
fluid to Mott insulator. Somewhat surprisingly, we find the
excitation during a ramp across the gapless superfluid to be
negligible as compared to the excitation that builds up after
crossing the critical point to the Mott phase. Apparently, the
different critical superfluid ground states that are crossed by
the linear ramp are similar enough for the excitation to be
negligible despite their vanishing gap. What matters here is that
a relatively large change of the tunneling rate during the ramp
across the superfluid phase corresponds to a relatively small
change of the Luttinger liquid parameter K that determines
the ground state of the liquid. When measured by a distance
between different ground states, the superfluid phase can be
effectively identified as a single critical point. It is only after
crossing to the Mott phase that the ground state begins to
change fundamentally. This inevitably makes the excitations
build up until their growth is halted by the opening Mott gap.
The last crossover, that takes place at the time t̂ after crossing
to the Mott phase, is the essence of the quantum KZM. Our
simulations confirm this simple scenario by demonstrating that
the excitation energy in the Mott phase satisfies the KZ scaling
hypothesis.

The paper is organized as follows. We begin with a
general discussion of the textbook version of the quantum
Kibble-Zurek mechanism in Sec. II. This generic version
assumes gapfull phases on both sides of the transition and
a power-law divergence of the correlation length at the critical
point. These assumptions are relaxed in Sec. III where we
introduce the 1D Bose-Hubbard model and consider the phase
transition from Mott insulator to superfluid that belongs to the
Kosterlitz-Thouless universality class. Here the divergence of
the correlation length on the Mott side is exponential and
the whole superfluid phase is gapless and critical. We recall
relevant predictions of Ref. [87] for this type of transition.
In this paper these results are corroborated by numerical
simulations described in Secs. IV and V. In Sec. IV we describe

simulations of the Mott-to-superfluid transition and in Sec. V
those of the reverse superfluid-to-Mott quench. Finally, we
briefly conclude in Sec. VI.

II. QUANTUM KIBBLE-ZUREK MECHANISM

A distance from a quantum critical point can be measured
with a dimensionless parameter ε. The ground state of the
Hamiltonian H (ε) undergoes a fundamental change at ε = 0
when the correlation length in its ground state diverges like

ξ ∼ |ε|−ν (1)

and the relevant gap closes like

� ∼ |ε|zν . (2)

The system, initially prepared in its ground state, is driven
across the critical point by a linear quench,

ε(t) = t

τQ

, (3)

with a quench time τQ.
The evolution sufficiently far from the critical point is

initially adiabatic. However, the rate of change of epsilon,

∣∣∣∣ ε̇ε
∣∣∣∣ = 1

|t | , (4)

diverges at the gapless critical point. Therefore, the evolution
cannot be adiabatic in its neighborhood between −t̂ and t̂ ; see
Fig. 1. Here t̂ is the time when the gap (2) equals the rate (4),
so that

t̂ ∼ τ
zν/(1+zν)
Q . (5)

Just before the adiabatic-to-nonadiabatic crossover at −t̂ , the
state of the system is still approximately the adiabatic ground
state at ε = −ε̂, where

ε̂ = t̂

τQ

� τ
−1/(1+zν)
Q , (6)

t
−t̂ 0 +t̂

adiabatic adiabatic

impulse

rate

gap

FIG. 1. As a system is driven across a generic quantum critical
point with a linear ramp ε(t) = t/τQ, the energy gap between the
ground state and the first relevant excited state closes like |ε|zν and,
at the same time, the transition rate diverges like 1/|t |. The two are
equal at ±t̂ , where t̂ ∼ τ

zν/(1+zν)
Q . The evolution must be nonadiabatic

between −t̂ and t̂ .
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with a correlation length

ξ̂ ∼ ε̂−ν ∼ τ
ν/(1+zν)
Q . (7)

In a first-order impulse approximation, this state “freezes out”
at −t̂ and does not change until t̂ . At t̂ the frozen state is no
longer the ground state but an excited state with a correlation
length ξ̂ . It is the initial state for the adiabatic process that
follows after t̂ .

No matter how quantitatively accurate is the above “freeze-
out scenario,” this simple scaling argument establishes ξ̂ and
t̂ , interrelated via

t̂ ∼ ξ̂ z, (8)

as the relevant scales of length and time, respectively. What
is more, in the adiabatic limit, when τQ → ∞, both scales
diverge becoming the unique scales in the regime of long
wavelength and low frequency. In analogy to static critical
phenomena, this uniqueness suggests a scaling hypothe-
sis [22,82,83]:

〈ψ(t)|O(x)|ψ(t)〉 = ξ̂−�O FO(t/ξ̂ z,x/ξ̂ ). (9)

Here |ψ(t)〉 is the quantum state during the quench, O(x) is
an operator depending on a distance x, �O is its scaling di-
mension, and FO is its scaling function. The same conclusions
about scaling are reached when one follows the narrative based
on the sonic horizon [6].

III. KZ MECHANISM IN THE
KOSTERLITZ-THOULESS TRANSITION

The power laws (1,2) are not directly applicable in the
Kosterlitz-Thouless (KT) transition [88–90], where, on the
disordered/Mott side of the transition, the correlation length’s
divergence is exponential:

ξ = ξ0 exp(2a/
√

|ε|). (10)

Here a � 1 and ξ0 is a microscopic scale of length. This
faster-than-polynomial divergence can be captured by stating
that ν = ∞, see, e.g., [91], but it may tempt one to misuse
Eqs. (5)–(7) by inserting ν = ∞ together with z = 1 to obtain

t̂ ∼ τ 1
Q, ε̂ ∼ τ 0

Q, ξ̂ ∼ τ 1
Q. (11)

As shown in Ref. [87], these equations are valid asymptotically
for τQ → ∞ but this asymptote is achieved for unrealistically
slow τQ (and, hence, astronomically large ξ̂ of the order of
kilometers [87]). Below we briefly recount the argument.

In the 1D Bose-Hubbard model at commensurate filling,
where z = 1, the gap � ∼ ξ−z on the Mott-insulator side of
the transition closes like

� = �0 exp(−2a/
√

|ε|), (12)

where �0 is a microscopic energy scale. For the linear ramp (3),
driving a quench from the Mott insulator to superfluid, this gap

equals the rate (4) at t = −t̂ when

�0 exp(−2a/

√
t̂/τQ) = 1/t̂ . (13)

A solution of this transcendental equation is

t̂ = τQ

a2

W2(a
√

�0τQ)
, (14)

where W is the Lambert function [92]. The above solution is
plotted for different values of a � 1 in Figs. 2(a) and 2(b). A
similar relation has been derived and confirmed by numerical
simulations in a dissipative classical model [93]. It has been
also tested in a recent experiment [94].

Figure 2 shows that the exponent of unity for the depen-
dence of t̂ on τQ in Eq. (11) is attained only for exceedingly
slow quenches that are unlikely to be experimentally or
numerically accessible. For any reasonably slow quenches the
effective exponent would be significantly less than 1.

The above argument determines the correlation length ξ̂

imprinted on the quantum state on the Mott side of the
transition. It characterizes the excited state when the quench
ramp enters the superfluid phase. In this critical phase the
imprinted correlations are spreading with a velocity limited by
the speed of quasiparticles.
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FIG. 2. (a) In log-log scale a generic KZ power law t̂ ∝ τ
νz/(1+νz)
Q

in (5) becomes a function log10 �0 t̂ = νz

1+νz
log10 �0τQ + const,

where �0 is a microscopic energy scale. For comparison, in (a), we
plot t̂ for the Kosterlitz-Thouless transition in the 1D Bose-Hubbard
model (14) in function of τQ over many decades of the argument.
This function becomes linear only asymptotically for τQ → ∞, but
it may appear linear locally, i.e., in a range of one or two decades.
Indeed, in (b), we focus on the narrow range of �0τQ = 100...2 that
is small enough e.g. for a realistic cold-atom experiment. These
plots can be reasonably approximated by linear functions, especially
when experimental error bars are present. In (c), we plot a local
slope d log10 (�0 t̂)/d log10 (�0τQ) of the log-log plot in panel (a) in
function of �0τQ. The slope 1 in Eq. (11) is achieved asymptotically
but only for τQ that are unrealistically large and imply correlations
over distances that are “astronomical” in magnitude. In (d), a focus
on the realistic τQ shows that the local slope can be significantly less
than 1.
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IV. QUENCH FROM MOTT INSULATOR TO SUPERFLUID

The 1D Bose-Hubbard model at the commensurate filling
of 1 particle per site is described by a Hamiltonian

H = −J

L−1∑
s=1

(b†l bl+1 + b
†
l+1bl) + U

2

L∑
l=1

nl(nl − 1), (15)

where J is the hopping rate and U is the on-site interaction
strength. The Kosterlitz-Thouless quantum phase transition
from the Mott insulator to superfluid takes place at Jc = 0.29
(see, e.g., Ref. [97]). We consider a quench driven by a linear
ramp,

J (t) = Jc

{
0, for t � −τQ,

1 + t/τQ, for t > −τQ,
(16)

from J (−τQ) = 0 to J (τQ) = 2Jc. The initial state is the
ground state at J = 0:

|ψ(0)〉 = |1,1,1, . . . ,1〉. (17)

Figure 3(a) shows that there is a finite density of excitation
energy W/L above the adiabatic ground state during a
quench, hence the evolution with the ramp is not adiabatic.
Furthermore, the system seems to be excited in two stages by
two different mechanisms.

The early oscillations visible at small J are excited by
the discontinuous time derivative of the ramp at J = 0 that is
proportional to 1/τQ. Since this sudden initial jolt excites states
well above the Mott gap with a probability proportional to τ−2

Q ,

the amplitude of the early excitation is roughly W/L ∝ τ−2
Q , as

can be demonstrated by the quantum perturbation theory [98].
For small enough J they compare well with predictions of
the Bogoliubov doublon-holon model [96]; see Fig. 3(b). For
larger J , as their energy gap closes with J approaching Jc, the
early oscillations are adiabatically suppressed. Closer to Jc the
KZ mechanism steps in; see Fig. 4.

At the earlier stages of the project we attempted to mitigate
the effect of the initial jolt by initiating the quench more
smoothly. For rapid quenches such efforts proved only party
successful. However, similarly as for the linear ramp in
Fig. 3(a), long quench times suppress the effect of these early
“jolt” excitations compared to those caused by the crossing of
the critical region.

The quench times in our numerical simulations are far
below the “astronomical” standards that would demand ξ̂ of
the order of kilometers to approach the scaling ξ̂ ∼ τQ in
Eq. (11). Limited by the system size L they span a narrow range
of magnitude. Therefore, we can assume a phenomenological
power law for the ground-state correlation length in the Mott
phase:

ξ ∼ ε−νL . (18)

Given the exponential divergence (10), we expect the effective
exponent νL to be large. To account for finite-size effects, we
allow for its dependence on L. Furthermore, we found that the
data can be accurately parametrized by letting the gap scale
with an effective dynamical exponent:

� ∼ ξ−zL ∼ εzLνL . (19)

We expect to recover the exact z∞ = 1 for sufficiently large L.
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FIG. 3. (a) Density of excitation energy W/L in the center of
L = 100 sites in function of the hopping frequency J results from
DMRG [95] simulations for different τQ. The early excitation visible
at small J originates from the discontinuous slope of the ramp (16)
at J = 0. This initial excitation is suppressed adiabatically when J

is getting closer to Jc = 0.29 (the vertical dashed line) and the gap
is closing. The following excitation that begins to grow before Jc is
attributed to the KZ mechanism. For τQ = 10 the initial excitation
is too strong and the KZ excitation begins too early for the two
mechanisms to be clearly separated in J . (b) Focus on small J where
DMRG (solid lines) can be compared with the Bogoliubov theory for
doublons and holons [96] (data points). The agreement is better for
faster τQ where the state remains closer to the initial Fock state (17)
and has lower density of doublons and holons.

The correlation length in the ground state is obtained from
the best fit to the tail of the correlator:

C(x) = 〈b†sbs+x〉 ∼ e−x/ξ

x1/4
. (20)
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t
−t̂ 0

adiabatic

impulse

rate

gap

FIG. 4. Quench from the Mott-insulator to superfluid, driven by
the linear ramp (16), the initial evolution before −t̂ is adiabatic, then
it becomes approximately impulse.

The lengths and gaps for different ε and L are collected in
Figs. 5(a) and 5(b). They fit well the phenomenological power
laws (18) and (19). As a self-consistency check, Fig. 5(c) shows
how the dynamical exponent zL decays to 1 with increasing
L. For each L we use the effective exponents to find the KZ
scales,

t̂ ∼ τ
zLνL/(1+zLνL)
Q , ξ̂ ∼ τ

νL/(1+zLνL)
Q . (21)

These scales are applied to verify the KZ scaling hypothesis,

C(t,x) = ξ̂−1/4FC(t/ξ̂ zL ,x/ξ̂ ), (22)

in Fig. 6. The plots for different τQ collapse demonstrating
validity of the hypothesis.

The collapsed plots in Fig. 6 depend on the scaled time t/t̂ .
This effect reveals that the impulse approximation is not quite
correct: since the correlations are spreading, the state cannot
be frozen. This behavior suggests a “sonic horizon” paradigm
we have also noted earlier. Nevertheless, as discussed and
demonstrated by an exact solution of the quantum Ising
chain [22], the scaling hypothesis still holds because the
velocity 2v̂ of the spreading must also be a combination of
the two KZ scales: v̂ ∼ ξ̂ /t̂ . For a linear dispersion at the
critical point, z = 1, v̂ is expected to be bounded from above
by twice the speed c0 of quasiparticles at the critical point.
In Fig. 7(a), we attempt an estimate of the spreading velocity
2v̂. Since accurate tails of the correlators cannot be accessed
on a finite lattice, our estimate is not robust but at least it is
less than the 2c0 estimated from the quasiparticle dispersion
in Fig. 7(b).

Neglecting remnants of the early excitation, a distribution of
quasiparticle excitations should have a scaling form f (t/t̂ ,ξ̂ k).
In the KZ regime close to Jc, their dispersion can be
approximated by the gapless linear dispersion at the critical
pojnt, ωk ≈ c0|k|, and the excitation energy (also sometimes
referred to as work [99,100]) density should satisfy a scaling
hypothesis:

W/L =
∫

dk

2π
c0|k|f (t/t̂ ,ξ̂ k) = ξ̂−2FW (t/t̂). (23)
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FIG. 5. (a) Log-log plot of the correlation length ξ in function of
ε for system sizes L = 25,50,100,200. For each L, the data are fitted
with a power law ξ ∼ ε−νL in the range of ε where 1 < ξ < L/6. The
best fits are shown by the solid lines and the best exponents νL are
listed in the legend. (b) Log-log plot of the energy gap � in function of
ε for L = 25,50,100,200. For each L, the data are fitted with a power
law � ∼ εzLνL in the range of ε where 1 < ξL < L/6. Here νL are the
exponents obtained in (a). The best fits are shown by the solid lines
and the best exponents zLνL are listed in the legend. (c) Log-log plot
of 1 − zL in function of L. This plot shows the convergence of zL → 1
with increasing L. It can be fitted with 1 − zL ∼ L−0.45 suggesting a
power-law approach of zL towards z = 1 with increasing L.

Here FW is a scaling function. In particular, at Jc (where
t/t̂ = 0) we expect W ∼ ξ̂−2. This scaling law and the more
general scaling hypothesis (23) are confirmed by the data
in Fig. 8.
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FIG. 6. (a) Linear plots of the scaled correlation functions
ξ̂ 1/4C(t,x) in function of the scaled distance x/ξ̂—measured in the
bulk of L = 100 lattice sites—at the scaled times t/t̂ = −1,0,1.
With increasing τQ the plots collapse to the scaling function FC(t/t̂).
(b) Same as in (a) but for L = 200 and t/t̂ = −1,0,0.6.
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FIG. 7. (a) Scaled correlation functions for τQ = 20 in function of
the scaled distance x/ξ̂ measured in the bulk of L = 100 lattice sites.
The three plots show the correlator at scaled times: t/t̂ = −1,0,1.
A cut by the horizontal dashed line at the level 1 suggests that the
correlations are spreading and the sonic horizon grows at a velocity
2v̂ = 0.34, but a similar cut at 0.5 suggests 2v̂ = 0.63. Longer tails
of the correlator, that could be probed at lower cut levels, are not
available on L = 100 sites. (b) Spreading velocity 2v̂ in function of
scaled correlation values (the cut level). (c) Gap � at Jc in function of
system size L. The best fit � = c0

π

L
yields 2c0 = 1.64 as the speed

of Luttinger quasiparticles. As expected, 2c0 is greater than our crude
estimates of 2v̂.

Finally, we considered the entropy of entanglement between
a block of l sites at the end of the chain and the rest of
it. Ignoring boundary effects, the entropy should satisfy a
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FIG. 8. (a) Log-log plot of the excitation energy density W/L in
function of the quench time τQ at the center of L = 100 lattice at the
time t = 0 when the quench is crossing the critical point. The solid
line is the best fit W ∼ τ−1.79

Q consistent with W ∼ τ−1.80
Q predicted

by Eqs. (21) and (23) with the exponents fitted in Fig. 5. (b) Same as
in (a) but for L = 200 sites. The solid line is the best fit W ∼ τ−1.75

Q

consistent with W ∼ τ−1.77
Q predicted by Eqs. (21) and (23) with the

exponents fitted in Fig. 5(b). (c) Scaled excitation energy density in
function of scaled time for L = 100 sites. The plots collapse to the
scaling function FW in the KZ regime close to Jc.

scaling hypothesis:

S(t,l)
c
6 ln ξ̂f (t/t̂)

= FS(t/t̂ ,l/ξ̂ ). (24)

0.0
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S
/
S

∞
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τQ =20
τQ =40
τQ =60
τQ =80
τQ =100

FIG. 9. Entanglement entropy S(t,l) between a block of l sites
at the end and the rest of the chain of L = 200 sites. Panels (a)–(c)
show the entropy at t = −t̂ , −t̂/2, and 0, respectively. All plots are
in function of the scaled block size, l/ξ̂ , and the entropy is divided
by S∞(t/t̂) = c

6 ln ξ̂f. This logarithmic function of τQ is obtained as
the best fit to S(t/t̂ ,L/2) with fitting parameters f and c. The best
central charge c for t = −t̂ , −t̂/2, 0 is c = 1.3, 0.9, 0.6, respectively.
The plots collapse demonstrating the scaling hypothesis in Eq. (24).

Here f and FS are scaling functions and c is the central charge
c = 1 at the Kosterlitz-Thouless transition. This hypothesis is
tested in Fig. 9. Except for t = −t̂ , where the state is still
close to the ground state, the fitted c, though close to 1, is
not quite satisfactory, but we have to bear in mind that the
range of τQ at hand is too narrow for a better fit with a
logarithmic function. However, we find that—in accordance
with the scaling hypothesis—the plots collapse to a scaling
function FS after rescaling the block size by ξ̂ .

V. QUENCH FROM SUPERFLUID TO MOTT INSULATOR

In this section we reverse the quench. Now the linear ramp
begins when t = −τQ deep in the superfluid phase at J = 2Jc

and ends at J = 0 when t = τQ:

J (t) = Jc(1 − t/τQ). (25)

The initial ground state has a quasi-long-range order char-
acterized by a power-law decay of its correlation function
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FIG. 10. (a) Correlation functions C(0,x) at the critical point,
J = Jc, during a linear quench (25) from the superfluid at J = 2Jc

to the Mott insulator at J = 0. With increasing τQ they converge to
the adiabatic ground-state correlator with a power-law tail: C(GS)

x ∼
x−1/4. (b) Log-log plot of the corresponding excitation energy density
W/L at the center of L = 100 lattice sites. These data are fitted with
a power law W ∼ τ−1.41

Q .

C(GS)(x). Small excitations in the superfluid—described by
a Luttinger liquid—are gapless, hence it may be tempting to
treat the whole evolution in the superfluid phase as impulse.
However, different critical ground states in the superfluid phase
are sufficiently similar to each other for a significant excitation
to be postponed until after the ramp crosses the boundary with
the Mott phase where the gap begins to open and the ground
state begins to change fundamentally. From this perspective,
the similarity between different superfluid critical states means
that on the superfluid side of the transition there is little
difference between the impulse and adiabatic approximations.
The whole superfluid critical phase can be effectively collapsed
to the Mott critical point.

Indeed, at t = 0—when the quench is leaving the superfluid
at Jc—the correlator C(t,x) quickly converges with increasing
τQ to the correlator in the adiabatic ground state C(GS)(x) ∼
x−1/4 at Jc; see Fig. 10(a). This fast convergence is consistent
with the quick decay of the excitation energy density shown in
Fig. 10(b). Its decay is steep—almost as steep as predicted for a

10220 40 60 80
τQ
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10−2

10−1

W
L

(b)

fit
DMRG
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10−2

10−1
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DMRG

FIG. 11. (a) Excitation energy density W/L in function of
the quench time τQ at J = 0 after the full linear ramp, J (t) =
Jc(1 − t/τQ), starting deep in the superfluid phase at J = 2Jc.
(b) Same as in (a) but after a half-ramp starting from the critical
point J = Jc. The data in (a) and (b) are almost the same as if the
initial half of the full ramp in the superfluid phase did not contribute
to the final excitation energy deep in the Mott phase.

linear ramp in a Luttinger liquid [101]: W ∼ τ−2
Q ln(c0τQ) with

c0 � 1 standing for the speed of Luttinger quasiparticles. It
turns out to be steep enough for the excitation in the superfluid
phase to give negligible contribution to the final excitation
deep in the Mott phase; see Fig. 11. Figure 11(a) shows the
final excitation energy density after the full ramp from J = 2Jc

to J = 0 and panel (b) after a shorter ramp from J = Jc to
J = 0. The two panels are almost indistinguishable and in

t
0 t̂

adiabaticimpulse

rate

gap

rate

FIG. 12. A ramp from the critical point at J = Jc to J = 0 deep in
the Mott phase. The evolution crosses over from impulse to adiabatic
near t̂ .
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FIG. 13. Scaled excitation energy density ξ̂ 2W/L in function of
scaled time t/t̂ for different quench times τQ. The plots collapse to
the scaling function FW (t/t̂) in Eq. (23).

both the excitation energy density is two orders of magnitude
higher than in Fig. 10(b). Therefore, the final excitation after
the full ramp originates almost exclusively from the evolution
in the Mott phase when the gap opens and the ground state
undergoes a fundamental change.

The Mott part of the full ramp, from Jc to 0, falls within
the KZ framework, as shown schematically in Fig. 12. The
evolution in the Mott phase crosses over from impulse to
adiabatic near t̂ ∼ τ

zLνL/(1+zLνL)
Q when the correlation length

in the ground state is ξ̂ ∼ τ
νL/(1+zLνL)
Q . As long as quasiparticle

excitations can be considered noninteracting, their distribution
f (t/t̂ ,ξ̂ k) satisfies the KZ scaling hypothesis. This scaling
form has at least two important consequences.

Before t̂ , when the quasiparticle dispersion can be approx-
imated by its critical form ωk = c0k, the excitation energy
density should conform to the scaling law (23). Indeed, the
scaled plots in Fig. 13 demonstrate a collapse to the scaling
function FW . As predicted, the collapse is perfect up to t̂ .

In the adiabatic stage after t̂ , the quasiparticle distribution
freezes out, f (t/t̂ ,ξ̂ k) = f (ξ̂ k), and their dispersion ωk for the
“excited” k between ±ξ̂−1 can be approximated by the finite
gap ω0. Consequently, the final excitation energy density at
J = 0 should scale as

W

L
=

∫ π

−π

dk

2π
ωkf (ξ̂ k) ∼ ξ̂−1. (26)

Since in this regime the excited quasiparticles are approx-
imately dispersionless, ωk ≈ ω0, the excitation energy den-
sity is simply proportional to their density ξ̂−1. With our
best fits for νL and zL on the L = 100 lattice we obtain
W ∼ τ−0.80

Q . This is roughly consistent with the best fit

W ∼ τ−0.96
Q in Fig. 11(b).

VI. CONCLUSION

In a linear quench from Mott insulator to superfluid the
excitation energy density, the entropy of entanglement, and
the correlations—that build up as the system is crossing the
critical point—satisfy the KZ scaling hypothesis with effective
power laws accurate for a limited range of quench times [87].
In particular, the range of correlations scales with an effective
power of the transition time.

All superfluid ground states are qualitatively similar.
Therefore, in a reverse quench from superfluid to Mott
insulator the excitation in the gapless superfluid turns out
to be negligible as compared to the excitation that begins to
build up just after crossing the critical point when the gap
opens and the ground state begins to change fundamentally.
The last excitation also falls into the KZ framework. The final
excitation energy deep in the Mott phase—proportional to the
number of empty and doubly occupied sites—decays with an
effective power of the quench time.
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