
Subspace-Based Emulation of the Relationship
Between Forecasting Error and Network

Performance in Joint Forecasting-Scheduling for the
Internet of Things

Mert Nakip
Institute of Theoretical and Applied Informatics

Polish Academy of Sciences (PAN)
Gliwice, Poland
mnakip@iitis.pl

Alperen Helva∗, Cüneyt Güzeliş†, Volkan Rodoplu‡
Department of Electrical and Electronics Engineering

Yaşar University
Izmir, Turkey

∗alperen.helva@outlook.com,
†{cuneyt.guzelis}, ‡{volkan.rodoplu}@yasar.edu.tr

Abstract—We develop a novel methodology that discovers the
relationship between the forecasting error and the performance
of the application that utilizes the forecasts. In our methodology,
an Artificial Neural Network (ANN) learns this relationship
while the forecasting error is kept inside a subspace of the
entire space of forecasting errors during training. We apply our
methodology to the case of Joint Forecasting-Scheduling (JFS)
for the Internet of Things (IoT). Our results hold potential to
improve the performance of JFS in next-generation networks and
can be applied to a much wider range of problems beyond IoT.

Index Terms—Internet of Things (IoT), forecasting, scheduling,
Massive Access Problem, Artificial Neural Network (ANN),
Machine-to-Machine (M2M) communication

I. INTRODUCTION

The Internet of Things (IoT) is a key technology for the
smart cities of the near future [1]. The application areas of
IoT widen every day [2][3]. These applications include fleet
management, environmental monitoring and control systems,
traffic controlling as well as smart buildings [4]. Although
IoT is one of the technologies that make the daily life of
humans easier, the challenges that must be overcome in order
to unleash IoT grow as the number of IoT devices increases.
In the near future, it is expected that there will be 30 billion
IoT devices on the Internet [5]. In addition, more than half of
IoT devices are expected to fall in the Massive IoT segment
[6], in which a base station or a gateway will cover a massive
number of low-cost IoT devices. The connection requests of
the massive number of IoT devices to a single gateway will
result in a significant access problem in cellular networks
[7][8]. This problem is referred to as the “Massive Access
Problem” of IoT.

In order to solve the Massive Access Problem, Reference
[9] proposed Joint Forecasting-Scheduling (JFS), which is a
machine learning based proactive resource allocation tech-
nique. JFS ensures that it allocates the resources in advance

This work has been supported by TUBITAK (Scientific and Technological
Research Council of Turkey) under the 1001 program grant no. 118E277.

based on forecasts of IoT traffic in order to maximize the
network throughput. The performance of JFS is evaluated
in a number of works [9], [10], [11]. The results of these
works show that although JFS performs well in terms of
network throughput and energy consumption, its performance
depends highly on the performance of the forecasting scheme
that it utilizes. Thus, knowledge of the relationship between
the forecasting error and network performance would provide
crucial information in improving the performance of JFS. One
of the major foci of this work is the examination of this
relationship.

The focus of the past literature on forecasting has been to
minimize the forecasting error, which is captured by any of the
forecasting error metrics such as Mean Square Error (MSE),
Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE) or symmetric Mean Absolute Percentage Error
(sMAPE). These traditional forecasting error metrics do not
take into account the particular application that will utilize
the forecasting metric.1 In contrast, in this paper, we propose
an error metric that is specific to the application that will
utilize the results of forecasting. In contrast with the traditional
forecasting error metrics in which forecasting is decoupled
from the application that utilizes the forecasts, in this paper,
we propose an Application-Specific Error Function (ASEF).
In the particular example of JFS, which we examine in this
paper, the application that utilizes the forecasting results is
MAC-layer scheduling of the wireless resources. In this regard,
our aim is to discover the relationship between the forecasting
error (which is measured at the output of the forecaster) and
the network performance (which is measured at the output
of the scheduler) for the JFS system. In this context, ASEF
measures how the performance of the forecasting algorithm in
JFS affects the resulting network performance.

1In many instances, more than one application may utilize the metric.
Furthermore, the forecaster might have no knowledge of which application
will utilize the forecasts.

In addition to the above conceptual contribution, the major
methodological contribution of this paper to the literature
is the emulation of the relationship between the forecasting
error and the network performance by an Artificial Neural
Network (ANN). In our investigations, we have found that it
is extremely difficult for an ANN to learn this relationship if
the space of forecasting errors is taken to be the original space
of all possible forecasting errors produced by the forecaster.
One of our key contributions is the idea that if the forecasting
errors are constrained to lie on a subspace of the original space
of forecasting errors, then it becomes possible for the ANN
to learn the relationship between the forecasting error and
the network performance. In this work, we design an ANN
that learns this relationship successfully on a subspace of the
entire space of forecasting errors. Furthermore, we evaluate
the performance of this ANN, which we call “Emulator for
ASEF”, or E-ASEF, for short, via simulations that show that
E-ASEF achieves high performance with very fast execution
time.

The rest of this paper is organized as follows: In Section II,
we present the relationship of this work to the state of the art.
In Section III, we state our assumptions. In Section IV, we
present ASEF for the JFS system. In Section V, we describe
the design of an ANN, called E-ASEF, that emulates ASEF
on a subspace. In Section VI, we evaluate the performance of
E-ASEF. In Section VII, we present our conclusions.

II. RELATED WORK

We now describe the difference between our work and
the current literature. To this end, we categorize the related
literature into three categories: (1) The works that aim to
improve the performance of JFS. (2) The articles that utilize
traditional forecasting error metrics for IoT traffic at layers
beyond the MAC layer. (3) The papers that perform subspace
learning in machine learning models in contexts outside of
IoT.

First, Reference [9] proposed the basic Joint Forecasting-
Scheduling system. Reference [10] presented the multi-scale
algorithm for JFS, which improved the basic scheme by its
ability to extend the window over which accurate forecasts are
available. Reference [11] extended the JFS system to the multi-
channel case. Even though these works have improved the
performance of JFS, they have not investigated the relationship
between the forecasting error and the network performance. In
contrast, the examination of this relationship is one of the main
foci of this work.

Second, Reference [12] forecasts the traffic of individual
IoT devices in order to minimize MSE and measures the
performance via sMAPE. Reference [13] proposes a neural
network model to forecast the traffic volume in an IoT network
and measures the performance via various forecasting error
metrics (including R2, MSE, and MAE). In addition, Refer-
ence [14] forecasts the type of the IoT traffic based on gradient
boosting neural networks and measures the performance via
classification metrics (such as accuracy, F1 score, precision).
Whereas all of the works that focus on the forecasting of IoT

traffic use well-known error metrics to measure the forecasting
error, we propose ASEF as a novel error metric that measures
the effects of the forecasting error on network performance.

Third, Reference [15] performs subspace learning by using
a hebbian/anti-hebbian neural network for which the input
data are projected onto the principal subspace. Furthermore,
subspace learning has been used for pattern recognition in
[16], for spectral regression in [17] and for computer vision
via robust Principal Component Analysis (PCA) in [18], [19].
In [20] and [21], the authors perform feature selection and
subspace learning jointly. Whereas all of these works project
the inputs onto a subspace in order to reduce the input
dimension, we train our model by using samples that reside
on a given subspace such that ASEF becomes learnable.

III. ASSUMPTIONS

We assume2 that there is a set of N IoT devices, denoted
by N , in the coverage area of Gateway G. In addition, each
device i in N has a direct wireless link to G.

We let m denote the index of a MAC-layer slot (in short,
“slot”). Furthermore, we let xi[m] denote the total number
of bits generated by device i in slot m. We assume that the
generation of traffic by each IoT device occurs in bursts.
Moreover, we assume that every time that an IoT device
i transmits to G, it compresses its traffic pattern since its
last transmission and sends this along with its actual data.
For each IoT device, Gateway G pieces together these traffic
patterns and thus has access to the entire past traffic pattern
of that device. Gateway G then performs the k-step ahead
forecast of the future traffic generation pattern for all values of
k ∈ {1, . . . ,K} for each IoT device. Based on these forecasts,
G schedules the uplink transmissions from all of these IoT
devices in advance.3

For a JFS system, the throughput is defined as the ratio of
the total number of bits in successfully transmitted bursts to the
total number of bits in offered traffic over a scheduling window
of duration Tsch.4 While the framework that we develop for
ASEF is general and works for any network performance
metric, throughput will be the main metric by which we
measure network performance in this paper.

IV. APPLICATION SPECIFIC ERROR FUNCTION (ASEF)
FOR JFS

In this section, we describe the ASEF for the JFS system.
After we have defined ASEF, we shall emulate this function
via an ANN in Section V.

In Fig. 1, we present the block diagram through which
we define ASEF for the JFS system. For the definition of
ASEF, we use two JFS systems that run in parallel. The upper

2The assumptions of this work are identical to those in [9], which describes
the JFS system.

3For simplicity, we do not model mobile devices that change coverage areas
in this work.

4We note that this differs from the traditional definition of throughput. In
this definition, the throughput serves as a measure of efficiency of the JFS
system; it measures the efficiency with which the system is able to deliver
bits successfully to the Gateway at the MAC layer.

Fig. 1. ASEF is defined as a “black box” by the set of components that appear
in the dashed box in this figure. Our goal will be to emulate this ASEF via
an ANN.

branch of this figure is a JFS system that consists of a Bank
of Forecasters (BoF) and a Scheduler5. The lower branch of
this figure is a JFS system under the actual traffic generation
patterns (a.k.a. “perfect forecasts”) of the devices. The ASEF
is defined as the function that computes the difference between
the performance of the application under forecasts versus the
one under perfect forecasts.6

In this figure, at each discrete time m, Xpast denotes the
input matrix of the BoF whose entry (i, s) is xi[m−s], where
s can take values in the range of integers in [0,m]. The X̂ is
the output matrix of the BoF whose entry (i, k) is the forecast
of the number of bits at the kth step in the traffic generation
pattern of device i, denoted by x̂i[m + k], where k can take
values in the range of integers [1,K]. In addition, the matrix
X̃ denotes the actual past traffic generation pattern that has
been accumulated, whose entry (i, k) is xi[m+ k].

Furthermore, the red dashed box in Fig. 1 shows the ASEF
for the JFS system, where the inputs of ASEF are X̃ and X̂.
In this figure, ASEF is comprised of three parts that appear in
this red dashed box: the upper branch of the figure in the box;
the lower branch of the figure in the box; and the difference
between the outputs of the Network Performance Calculators
that appear in this figure.

First, on the upper branch of ASEF in Fig. 1, based on
the forecast future traffic generation matrix X̂, the Scheduler
produces a schedule matrix, denoted by S(X̂), whose entry
(i,m) is the binary variable that equals 1 if MAC-slot m
has been allocated to device i, and equals 0 otherwise. Then,
the Network Performance Calculator in this figure calculates

5For the Scheduler of JFS, we use the Priority based on Average Load (PAL)
algorithm, which was developed in [9]. Although any scheduling algorithm
can be used in our methodology, in this article, the reason that we use PAL
is that the previous studies [9], [10] showed that PAL is a fast heuristic with
relatively high performance.

6Note that in an actual system, the performance under perfect forecasts can
be measured only after the traffic of each IoT device has been realized. The
system diagram that appears in Fig. 1 is used for network simulation during
which the inputs to the system as well as the performance difference at the
output are collected as data that will be used later in order to train the ANN
that will emulate the ASEF block shown in this figure.

the network performance η(S(X̂), X̃) based on S(X̂) and X̃.
Throughout this paper, the performance metric will be the
network throughput (as defined in Section III).

Second, on the lower branch of ASEF in Fig. 1, we compute
the network performance of JFS under perfect forecasts, which
is denoted by η(S(X̃), X̃). Note that perfect forecasts are
available only after the actual traffic has been realized in
practice. In our simulations, we use these perfect forecasts in
order to measure the difference in the network performance
attained under forecasting versus the one under the actual
traffic realizations.

Third, after the operations in each of the upper and the
lower branches are completed, we calculate the throughput
difference, denoted by Φ, which is the output of the ASEF.
Thus, the output of ASEF is

Φ = η(S(X̃), X̃)− η(S(X̂), X̃) (1)

V. EMULATION OF ASEF (E-ASEF) VIA AN ANN

Recall that the main objective in computing the ASEF is
to pave the way to algorithms that will significantly improve
the JFS system by taking the advantage of the knowledge of
Φ. However, since ASEF requires computing the schedule
matrices as well as the throughput metrics, the execution
time of ASEF in its original form is too high for its use in
practical algorithms that can improve the performance of the
JFS system. In order to solve this problem, we now aim to
emulate ASEF by an ANN. By using an ANN in the place of
ASEF, we will generate Φ such that none of the blocks that
appear under ASEF, such as the Scheduler or the Network
Performance Calculator will be needed. Thus, the ANN that
replaces ASEF shall calculate the value of Φ based on the
inputs to the ASEF.

Fig. 2. E-ASEF, which is the ANN-based emulator for ASEF

In Fig. 2, in the design of the emulator, the inputs are the
matrices X̃ and X̂, and the output is the value of Φ that will
be estimated by the ANN. We shall denote this estimate by
Φ̂. In our design, the E-ASEF consists of three layers: the
Differencing Layer, the Averaging Layer and the Error Metric
Learner (EML).

At the first layer, the emulator computes D = X̂− X̃ and
passes the matrix D of the forecasting error to the next layer.

At the second layer, we take the average over all of the
elements of D, which generates d̄. The reason that we use
averaging is two-fold: (1) During our experimental work, we
observed that the value of Φ is highly learnable for a subspace
of ASEF on which the forecasting error is kept constant across
all of the devices. That is, in this subspace, the value of
d̄ equals to the constant value of forecasting error; that is
d̄ = D[i, k],∀i, k. (2) Instead of using X̃ and X̂ to form the
estimate Φ̂, using d̄ significantly decreases the input dimension
and hence the computational complexity of the model.

At the third layer, we use ANN as the EML in order to form
the estimate Φ̂ based on d̄. Since E-ASEF is a model that can
be used in other algorithms to improve performance of JFS,
the computational complexity of E-ASEF is as important as
its learning performance. Thus, we aim to use a relatively
simple ANN architecture in the EML layer. To this end,
we compare the Linear Perceptron (namely, Adaline), the
Nonlinear Perceptron, and the Multi-Layer Perceptron (MLP).
For each of these models, we select the architecture and the
activation functions as follows: For the Linear Perceptron,
note that there is no activation function or any other hyper-
parameter. The Nonlinear Perceptron is comprised of a single
neuron with an activation function that is selected as the
tangent hyperbolic tanh7. For the MLP, we use a single hidden
layer and an output layer, where the hidden layer contains 5
neurons. The activation function of each neuron in the MLP
is selected as tanh.

VI. RESULTS

A. IoT Data

We use the dataset in [22], which is comprised of the
traffic generation patterns of 10000 bootstrapped IoT devices.
According to the classification of Reference [12], there are
four distinct IoT classes: Fixed Bit Periodic (FBP), Variable
Bit Periodic (VBP), Fixed Bit Aperiodic (FBA) and Variable
Bit Aperiodic (VBA). In this classification, “Fixed Bit” states
that the IoT device generates a fixed number of bits in
each burst while “Variable Bit” states otherwise. In addition,
“Periodic” states that the inter-arrival time between the bursts
of a device is constant while “Aperiodic” states otherwise.
Since both number of bits and the generation time of each
burst of each device in the FBP class are known in advance,
forecasting is needed only for the VBP, FBA, and the VBA
classes. Thus, in our simulations, we include only these three
classes in order to obtain a system in which we evaluate the
performance of E-ASEF.

B. Performance Evaluation of E-ASEF

We now evaluate the performance of E-ASEF under each
of the Linear Perceptron, Nonlinear Perceptron and the MLP
forecasting models on the following four distinct network set-
ups: N is comprised of (1) equal percentages of VBP, FBA
and VBA classes; (2) only devices in the VBP class; (3) only
devices in the FBA class; (4) only devices in the VBA class.

7We selected the activation function as tanh because the value of Φ is in
the range [−1, 1] for our application.

For each network set-up, we aim to evaluate the perfor-
mance in a subspace in which the forecasting error is constant
across all of the forecasters. To this end, we replace each
forecaster in the BoF by adding a constant number of bits,
which we denote by a, to the actual traffic generation of
each of the devices.8 Thus, whenever x̂i[m] = xi[m] + a, we
say that the forecaster overestimates the value of the traffic
generation pattern for device i if a > 0, and underestimates it
if a < 0. (The estimate matches the actual whenever a = 0.)
In our experiments, we increment a in multiples of 10 from
the lowest to the highest value in the range [−100, 100]. In
addition, we set the number of IoT devices in the coverage
area of the Gateway G as N = 2000. We set the duration of
a MAC-layer slot, denoted by τMAC, to 0.1 s.

In our experiments, we observed that the behavior of ASEF
is distinct for each of the negative and positive values of a. For
convenience, we separated the values of a into two categories
as follows: We hold the negative values of a in the vector A−

and the positive values in the vector A+. Then, we let Φ−

denote the outputs of E-ASEF for the corresponding A−, and
let Φ+ denote those for A+. A single E-ASEF structure should
not be expected to learn both the Φ− and Φ+ functions due
to the structural differences that we observed between these
functions in our experiments.9 In this paper, E-ASEF is trained
separately for the Φ− and the Φ+ functions.

1) Training of E-ASEF: Based on the above observations,
we shall now explain how we train E-ASEF. First, for each
value of a, we simulate the JFS system for 1000 distinct
scheduling windows, each of whose duration equals 15 min-
utes. For each scheduling window, we randomly select the IoT
devices from each device class for the following four distinct
experimental set-ups: (1) We select an equal number of devices
from each of the VBP, FBA and the VBA classes. (2) All of
the devices are in the VBP class. (3) All of the devices are in
the FBA class. (4) All of the devices are in the VBA class.
Let s be the index of a scheduling window. We shall append
a superscript s to each of the variables that appear in Fig. 2
in order to indicate to which scheduling window that variable
belongs. Now, for each experimental set-up, we extract the
traffic generation patterns X̃(s) from the dataset and calculate
X̂(s) for a. Based on X̃(s) and X̂(s), we compute the schedule
via the PAL scheduling algorithm and calculate the network
performance difference Φ−(s) if a < 0 and calculate Φ+(s)

otherwise.
Then, for each s, the inputs of E-ASEF are X̂(s) and

X̃(s). The Φ−(s) is the output in the case of underestima-
tion, and Φ+(s) is the output in the case of overestimation.
The connection weights and the biases of EML are updated
via backpropagation using the gradient descent algorithm in
pattern mode.

2) Learning Performance of E-ASEF: Fig. 3 shows how
each of the Linear Perceptron, the Nonlinear Perceptron and

8The fact that this constant a does not have an i-index indicates that it is
constant across all of the devices.

9The structural differences between Φ− and Φ+ will be shown in Fig. 3-6.

the MLP fits to each function Φ− and Φ+. In this figure, we
see that MLP fits both functions almost perfectly. In addition,
both the Linear Perceptron and the Nonlinear Perceptron
can fit only the average of each of the underestimation and
overestimation segments of the function. In this figure, the
performance of E-ASEF under MLP shows that ASEF for JFS
is highly predictable.

Fig. 3. Learning performance of E-ASEF under each of the Linear Perceptron,
Nonlinear Perceptron, and MLP for the throughput difference Φ under the
network set-up that has 1/3 VBP, 1/3 FBA and 1/3 VBA as the fractions in
each device class.

In Fig. 4, for the simulation that is comprised of IoT devices,
each of which falls in the VBP class, we see that the MLP
is the best predictor for the majority of the values of a.
However, for E-ASEF under MLP, the difference between
Φ̂ and Φ slowly increases as the |a| increases. In addition,
we see that since the Linear Perceptron fits well to the flat
segment of the function which corresponds to Φ−, it is not
able capture the sharp decrease at a = −10. On the other
hand, the Nonlinear Perceptron is not able to capture Φ−, but
it successfully captures the sharp decrease at a = −10.

Fig. 4. The learning performance of E-ASEF under each of the Linear
Perceptron, Nonlinear Perceptron, and MLP for the throughput difference Φ
for a network that is constituted by only VBP devices.

In Fig. 5, for the simulation that is comprised of the IoT
devices, each of which falls in the FBA class, we see that MLP
predicts Φ almost perfectly and achieves the most accurate
result compared with those for the Linear Perceptron and the

Nonlinear Perceptron models for the majority of the values of
a.

Fig. 5. Learning performance of E-ASEF under each of the Linear Perceptron,
Nonlinear Perceptron, and the MLP for the throughput difference Φ under the
network set-up that has 100% of the IoT devices in the FBA class.

In Fig. 6, we present the performance of E-ASEF under
each of the Linear Perceptron, Nonlinear Perceptron, and the
MLP for the simulation that is comprised of the IoT devices
each of which falls in VBA class. As seen in this figure, Φ̂
under MLP is almost equal to Φ, where MLP is able to predict
the sharp decrease between a = −10 and a = 0. In addition,
while the Linear Perceptron fits to the mean of each of Φ−

and Φ+ and the Nonlinear Perceptron also fits close to the
mean of each of those, the MLP is the best-performing model
as it is for all of the other simulation set-ups.

Fig. 6. Learning performance of E-ASEF under each of the Linear Perceptron,
Nonlinear Perceptron, and MLP for the throughput difference Φ under the
network set-up that has devices only in the VBA class.

C. Execution Time of E-ASEF

In Table I, we present the execution time of E-ASEF. We
calculate the mean and the standard deviation of the execution
time over 100 simulation runs on the Google Colab platform
with no accelarator. In this table, we see that the execution time
of E-ASEF is under 20 µs for each of the Linear Perceptron,
Nonlinear Perceptron and the MLP models. This shows that
E-ASEF is a practical emulation methodology in this setting.
In addition, we see that the execution time difference between

E-ASEF under MLP and that under the other models is less
than 1 µs. Thus, MLP is the best selection among the models
that we have examined for the EML block in E-ASEF, since
it achieves the best performance at an execution time that is
comparable to those of the other models.

TABLE I
EXECUTION TIME OF E-ASEF [µS]

EML Model in E-ASEF Mean Standard

Deviation

Linear Perceptron 18.68 0.63

Nonlinear Perceptron 19.16 0.85

MLP 19.42 0.22

VII. CONCLUSION

In this paper, we have developed a novel methodology in
order to investigate the relationship between the forecasting er-
ror and network performance in Joint Forecasting-Scheduling
(JFS). Our methodology has been to build an Artificial Neural
Network (ANN) whose input is the forecasting error and
whose output is the difference between the network perfor-
mance obtained under forecasting versus that obtained under
the actual network traffic realization. The key novel aspect
of our work is the idea of a subspace-based emulation where
only a subspace of the entire space of forecasting errors is
employed. We have demonstrated that a Multi-Layer Percep-
tron (MLP) can successfully learn the relationship between the
forecasting error and the network performance difference on
this subspace.

In our future work, we plan to apply the techniques devel-
oped in this paper to the task of improving the performance
of JFS, which will enable an IoT Gateway to accommodate
a massive number of IoT devices. Furthermore, the subspace-
based emulation technique developed in this paper can poten-
tially be applied in diverse contexts beyond IoT.

REFERENCES

[1] M. Hasan, E. Hossain, and D. Niyato, “Random access for machine-
to-machine communication in LTE-advanced networks: issues and ap-
proaches,” IEEE communications Magazine, vol. 51, no. 6, pp. 86–93,
2013.

[2] O. Bello and S. Zeadally, “Toward efficient smartification of the Internet
of Things (IoT) services,” Future Generation Computer Systems, vol. 92,
pp. 663–673, 2019.

[3] G. Fortino, W. Russo, C. Savaglio, M. Viroli, and M. Zhou, “Modeling
opportunistic IoT services in open IoT ecosystems,” in WOA, 2017, pp.
90–95.

[4] C. Kuhlins, B. Rathonyi, A. Zaidi, and M. Hogan, “White paper:
Cellular networks for massive IoT,” Jan. 2020. [Online]. Available:
https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-
networks-for-massive-iot–enabling-low-power-wide-area-applications

[5] Cisco, Cisco Annual Internet Report (2018–2023), Mar. 2020. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[6] Ericsson, Ericsson Mobility Report, Nov. 2019. [Online]. Available:
https://www.ericsson.com/en/mobility-report

[7] F. Ghavimi and H.-H. Chen, “M2M communications in 3GPP LTE/LTE-
A networks: Architectures, service requirements, challenges, and appli-
cations,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp.
525–549, 2015.

[8] A. Zanella, M. Zorzi, A. F. dos Santos, P. Popovski, N. Pratas, C. Ste-
fanovic, A. Dekorsy, C. Bockelmann, B. Busropan, and T. A. Norp,
“M2M massive wireless access: Challenges, research issues, and ways
forward,” in 2013 IEEE Globecom Workshops. IEEE, 2013, pp. 151–
156.

[9] M. Nakip, V. Rodoplu, C. Güzeliş, and D. T. Eliiyi, “Joint forecasting-
scheduling for the Internet of Things,” in 2019 IEEE Global Conference
on Internet of Things (GCIoT). IEEE, 2019, pp. 1–7.

[10] V. Rodoplu, M. Nakıp, D. T. Eliiyi, and C. Güzelis, “A multi-scale
algorithm for joint forecasting-scheduling to solve the massive access
problem of IoT,” IEEE Internet of Things Journal, vol. 7, no. 9, pp.
8572–8589, 2020.

[11] V. Rodoplu, M. Nakip, R. Qorbanian, and D. T. Eliiyi, “Multi-channel
joint forecasting-scheduling for the Internet of Things,” IEEE Access,
vol. 8, pp. 217 324–217 354, 2020.

[12] M. Nakip, B. C. Gül, V. Rodoplu, and C. Güzeliş, “Comparative
study of forecasting schemes for IoT device traffic in machine-to-
machine communication,” in Proceedings of the 2019 4th International
Conference on Cloud Computing and Internet of Things, 2019, pp. 102–
109.

[13] M. Lopez-Martin, B. Carro, and A. Sanchez-Esguevillas, “Neural net-
work architecture based on gradient boosting for IoT traffic prediction,”
Future Generation Computer Systems, vol. 100, pp. 656–673, 2019.

[14] ——, “IoT type-of-traffic forecasting method based on gradient boosting
neural networks,” Future Generation Computer Systems, vol. 105, pp.
331–345, 2020.

[15] C. Pehlevan, T. Hu, and D. B. Chklovskii, “A hebbian/anti-hebbian
neural network for linear subspace learning: A derivation from mul-
tidimensional scaling of streaming data,” Neural computation, vol. 27,
no. 7, pp. 1461–1495, 2015.

[16] X. Jiang, “Linear subspace learning-based dimensionality reduction,”
IEEE Signal Processing Magazine, vol. 28, no. 2, pp. 16–26, 2011.

[17] D. Cai, X. He, and J. Han, “Spectral regression for efficient regularized
subspace learning,” in 2007 IEEE 11th International Conference on
Computer Vision, 2007, pp. 1–8.

[18] Y. Li, “On incremental and robust subspace learning,” Pattern recogni-
tion, vol. 37, no. 7, pp. 1509–1518, 2004.

[19] F. De La Torre and M. J. Black, “A framework for robust subspace
learning,” International Journal of Computer Vision, vol. 54, no. 1, pp.
117–142, 2003.

[20] Q. Gu, Z. Li, J. Han et al., “Joint feature selection and subspace learn-
ing,” in IJCAI Proceedings-International Joint Conference on Artificial
Intelligence, vol. 22, no. 1. Citeseer, 2011, p. 1294.

[21] K. Wang, R. He, L. Wang, W. Wang, and T. Tan, “Joint feature selection
and subspace learning for cross-modal retrieval,” IEEE transactions on
pattern analysis and machine intelligence, vol. 38, no. 10, pp. 2010–
2023, 2015.

[22] “IoT Traffic Generation Pattern Dataset,” Jan 2021.
[Online]. Available: https://www.kaggle.com/tubitak1001118e277/iot-
traffic-generation-patterns

