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Abstract—The broader use of Software Defined Network (SDN)
controllers creates periodic changes in topology and traffic rates
at routers that adapt the network to changes in network condi-
tions. Thus the transient behaviour of network components, and
in particular routers, is becoming of great interest. Since standard
queueing models are difficult to analyze under time-varying
conditions, we propose a tractable diffusion approximation for
both the transient and steady-state behaviour of a network router.
In particular, the analysis provides the steady-state and transient
delay and packet loss probability as a function of traffic load and
other characteristics. Using these results, we show that when
SDN routers change the paths of flows frequently, the network’s
behaviour may often be far from its steady-state behaviour.
Therefore any network optimization conducted with the help of
SDN should not be based on steady-state behaviour, but rather
on some metric reated to the network time dependent behaviour.

Index Terms—Network Routers, Internet Traffic, Quality of
Service (QoS), Diffusion Approximation

I. INTRODUCTION

The large scale deployment of the IoT [1] together with
Cloud Services [2], where measured data from sensors is
transported to the cloud for decision making and the control
of cyber-physical systems, has increased the complexity and
challenges of traditional networks that must now ensure better
security [3] of the traffic flows, acceptable quality of service,
flexible network management, and energy optimization [4].
The introduction of artificial intelligence into network routing
and management [5], [6] also provides greater variability in
the flows that traverse the network. Besides, the decoupling
of the data plane, the control plane and the application plane
through Software Defined Networks (SDN) [7] gives carriers,
service providers and enterprises more significant control over
the way traffic moves around networks [8], [9] and simplifies
network operation, management and administration. However,
it imposes frequent updates of network paths and of the traffic
levels that are carried by the routers, so that the transient
behaviour of routers and network components becomes of
great interest [10].

Recent studies have analyzed SDN networks to optimize
steady-state performance using queueing [11], [12], [13], [14],
[15], [16], [17] and network calculus [18], [19], [20]. Although
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these issues require the analysis of the transient behaviour
of a router, the usual tools for network performance are not
well adapted to this requirement since the transient analysis
of queueing network models is particularly difficult, and
the discrete event simulation of the transient behaviour of
networks is very time-consuming due to the large number of
randomized repetitions that are needed to achieve a reasonable
level of statistical accuracy.

Therefore, in this paper we address the time-dependent
behaviour of a router using a diffusion approximation which
offers two essential advantages: packet interarrival and service
times distributions do not depend on the usual “Poisson and
exponential” assumptions, and they lead to computationally
efficient results concerning the system’s transient behaviour.
Let us note that diffusion predictions have been included
in patented industrial telecommunication systems [21], [22].
Additionally, the diffusion model only requires the first two
moments of the interararival and service times, so that rela-
tively realistic parameters can be based on measured traffic
data, and it provides numerical results which are difficult to
obtain with other techniques [23]. Thus, the approach we take
in this paper allows us to predict the time it takes for a router to
reach its new steady-state after the input traffic rates change,
and to compute the packet loss probabilities in cases when
they may be very small and hard to obtain by simulation.

II. DIFFUSION MODEL OF A ROUTER

We consider the simplified architecture of a router shown in
Figure 1. One of the issues in the design of router architectures
is the allocation of buffering resources [24].

When a packet arrives at the input port of a router, it is
stored temporally, provided it cannot be scheduled immedi-
ately for processing. An Arbiter then removes the packet from
the input queue and stores it temporally in an internal Packet
Buffer while a copy of the header is sent to the Parser. The
Parser extracts the header fields and creates a tuple which
contains packet forwarding information and sends it to the
Flow Match Unit which uses this information to look up the
flow tables to match an entry [25]. If the match fails, the router
fires off a packet-in message containing the full packet or its
buffer ID to the connected SDN controller [26]. Otherwise,
the packet is dropped. However, if a matching entry is found
for the packet in the flow table, the flow rules installed by



Fig. 1. An example of the architecture of a router [25].

the controller are applied, and the packet is removed from the
internal Packet Buffer and forwarded through the back plane.

The input buffers and the Arbiter constitute the input queue-
ing system, the internal Packet Buffers and the OpenFlow (OF)
processing constitute the internal Packet Buffer queueing sys-
tem and the output queues, buffers and transmitter constitute
the output queueing system. We assume that the Arbiter is
running at a faster speed (Gbps), such that there is little or no
queueing at the input buffers and that for high-speed links, we
have negligible queueing at the output queues. Therefore, the
queueing model representation of the SDN forwarding node is
composed of a single internal Packet Buffer queueing system.

Let p be the probability that the router’s flow table does
not contain the installed flow rule for a given arriving packet;
it can happen because all the routers controlled by the same
SDN controller are not updated in a synchronized manner. The
absence of a flow forwarding rule for the arriving packet in the
flow table will be discovered after the all K flow table entries
have been checked, i.e. after time KT , where T is the time
to check each flow table entry. Therefore with probability p
the service time is constant, with zero variance. On the other
hand, with probability (1 − p), if the flow matching rule for
the packet exists in the router, it is in one of the K flow tables
entries, and the time to find it is the time spent checking each
flow table entry until the proper one is found. The distribution
of this time is discrete uniform between T and KT , with
mean (K+1)T/2 and variance (K2−1)T 2/12, unless a more
sophisticated search data structure is implemented (in which
case the search time may be proportional to the logarithm of
table size).

When a flow matching rule for a packet is found, the packet
is sent to the appropriate output port for forwarding. The
number of data packet frames transmitted per second depends
on the transmission rate or speed and the distribution of the
size of IP packets. For high transmission speeds, which is
usual in core network routers, the delay in output ports may
be negligible. This way the queueing model of the node is
reduced to the model of the Packet Buffer. Since the buffer

is of finite capacity N , we will use a finite capacity diffusion
approximation model type G/G/1/N where a discrete-state pro-
cess {M(t), t ≥ 0} of the number of customers in the queue
is replaced by an appropriate continuous diffusion process,
{X(t), t ≥ 0}. Its incremental changes dX(t) = X(t+ dt)−
X(t) are normally distributed with mean βdt and variance
αdt, where β, α are coefficients of the diffusion equation. For
the process M(t) the changes at ∆T have mean (λ− µ)∆T
and variance (λ3σ2

A + µ3σ2
B)∆T = (λC2

A + µC2
B)∆T where

1/λ, 1/µ are mean values of interarrival and service times
distributions, σ2

A, σ2
B are their variances, and C2

A, C2
B their

squared coefficinces of variation. Therefore it is assumend
β = λ− µ and α = λC2

A + µC2
B .

Since the queue size must be positive, boundary conditions
such as absorbing [27], reflecting [28] or elementary return
barriers [29] are commonly used to constraint the diffusion
process to the positive x-axis. Because of the finite capacity
limited to N , the diffusion process should be limited to the
[0, N ] interval. Therefore, the diffusion approximation model
with elementary return barriers at x = 0 and x = N is used
[30]:

∂f(x, t;x0)

∂t
=
α

2

∂2f(x, t;x0)

∂x2
− β ∂f(x, t;x0)

∂x
+λp0(t)δ(x− 1) + µpN (t)δ(x−N + 1), (1)
dp0(t)

dt
= lim
x→0

[
α

2

∂f(x, t;x0)

∂x
− βf(x, t;x0)]− λp0(t)

dpN (t)

dt
= lim
x→N

[
α

2

∂f(x, t;x0)

∂x
− βf(x, t;x0)]− µpN (t),

where δ(x) is Dirac delta function.

A. Steady State Delay

In steady state, when limt→∞ p0(t) = p0, limt→∞ pN (t) =
pN , limt→∞ f(x, t;x0) = f(x), Eqs.(1) become ordinary
differential ones and their solution, for % = λ/µ, ρ < 1, can
be expressed as [29]:

f(x) =


λp0
−β

(1− ezx) for 0 < x ≤ 1 ,

λp0
−β

(e−z − 1)ezx for 1 ≤ x ≤ N − 1 ,

µpN
−β

(ez(x−N) − 1) for N − 1 ≤ x < N ,

(2)
where z = 2β

α , and the probability p0 of empty buffer as well
as the probability pN of full buffer , i.e. packet tail dropping
probability, are determined through normalization

p0 = {1 + %ez(N−1) +
%

1− %
[1− ez(N−1)]}−1 ,

pN = %p0e
z(N−1) .

The values p0, f(1), f(2), . . . , f(N − 1), pN determine the
distribution of the number of packets in the Packet Buffer.
Figure 2 presents typical solutions f(x) when we vary the
parameter % and Figure 3 displays the packet loss probabilities
p(N) as a function of %. When the utilization is over 80%, the
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Fig. 2. Influence of the utilization % on the distribution of the queue size
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Fig. 3. Influence of the utilization on the probability of tail dropping of
packets

probability of tail dropping of packets (buffer overflow) rises
sharply.

In all numerical examples we assume K = 950, T =
10−8sec, p = 0.01. The mean and variance of service time
distribution was determined as indicated above. For the interar-
rival time distribution, see Figure 4 we used data from CAIDA
(Center for Applied Internet Data Analysis) traces [31], more
precisely IPv4 packet interarrival times from the Equinix
Chicago link collected during one hour on 18 February 2016,
having more than 22 millions of packets belonging to over 1.17
millions of IPv4 flows. The obtained coefficient of variation
of the interarrival times was 1.02. The mean value is scaled
to assure various values of λ.

To determine the delay distribution, we will use the notion
of the first passage time which corresponds to the queueing
time.

The probability density fuction φ(x, t;x0) for a diffusion
process that starts at t = 0 from x = x0 (initial queue size
seen by an arriving packet when it joins the queue) and ends
when it attains the absorbing barrier at x = 0 is [27]

φ(x, t;x0) =
e
β
α (x−x0)− β

2

2α t

√
2παt

[
e−

(x−x0)2

2αt − e−
(x+x0)2

2αt

]
. (3)

The density function of first passage time from x = x0 to
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Fig. 4. The interarrival times of IP traffic.
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x = 0 is

γx0,0(t) = lim
x→0

[
α

2

∂

∂x
φ(x, t;x0)− βφ(x, t;x0)]

=
x0√

2Παt3
e−

(x0−β)2
2αt . (4)

and after normalization of γx0,0(t) for β < 0 we have∫ ∞
0

γx0,0(t)dt = e
2x0β
α , (5)

and the probability density function (PDF) of the first passage
time of the diffusion process from x = x0 to x = 0, for β < 0
is

γx0,0(t) =
x0√

2Παt3
e
−
[

2x0β
α +

(x0−β)2
2αt

]
. (6)

Suppose that a newly arrived packet sees x packets with
density f(x) given by Eq. (2), then the density of the delay is

fT (t) =

∫ ∞
0

[
x√

2Παt3
e
−
[

2xβ
α +

(x−β)2
2αt

]]
f(x)dx. (7)

Figure 5 presents the PDF fT (t) of the delay for a few
values of utilization %.

B. Transient delay modeling

In the case of steady-state analysis, the first two moments of
the interarrival and service times used to calculate the diffusion
parameters are constant. However, due to the unpredictable



characteristics of user traffic and the use of adaptive routing
protocols such as the self-aware routing protocol used in
SerIoT SDN core network, the characteristics of the traffic
arriving at the input and output buffers are dynamic. It requires
the transient delay analysis within short time intervals, where
the diffusion parameters are constant only with these interval
time interval.

Consider a diffusion process with two absorbing barriers at
x = 0 and x = N , that started at t = 0 from x = x0 and that
its probability density function φ(x, t;x0) has the following
form [27]

φ(x, t;x0) =


δ(x− x0 for t = 0 ,

1√
2Παt

∞∑
n=−∞

{a(t) + b(t)} for t > 0 ,

(8)
where

a(t) = exp

[
βx′n
α
− (x− x0 − x′n − βt)2

2αt

]
,

b(t) = exp

[
βx′′n
α
− (x− x0 − x′′n − βt)2

2αt

]
,

and x′n = 2nN , x′′n = −2x0 − x′n .
Suppose that the diffusion process starts at point ξ with PDF
ψ(ξ), ξ ∈ (0, N), limξ→0 ψ(ξ) = limξ→N ψ(ξ) = 0, then the
PDF of the process has the form

φ(x, t;ψ) =

∫ N

0

φ(x, t; ξ)ψ(ξ)dξ. (9)

The Laplace transform of φ(x, t;x0) can be expressed as

φ̄(x, s;x0) =
exp[β(x−x0)

α ]

A(s)
. (10)

.

∞∑
n=−∞

{
exp

[
−|x− x0 − x

′
n|

α
A(s)

]
− exp

[
−|x− x0 − x

′′
n|

α
A(s)

]}
, (11)

where A(s) =
√
β2 + 2αs.

Since the transient solution of equation (1) is not analyti-
cally tractable, the probability density function f(x, t;ψ) of
the diffusion approximation process with elementary returns
boundaries can be obtained numerically. It is composed of the
function φ(x, t;ψ), which is the probability density function
of the diffusion process with absorbing barriers at x = 0 and
x = N and the functions φ(x, t− τ ; 1) and φ(x, t− τ ;N − 1)
which are probability density functions of the diffusion pro-
cesses that started at time τ < t at points x = 1 and x = N−1
with densities g1(τ) and gN−1(τ) with instantaneous jumps
[32][33][34]

f(x, t;ψ) = φ(x, t;ψ) +

∫ t

0

g1(τ)φ(x, t− τ ; 1)dτ (12)

+

∫ t

0

gN−1(τ)φ(x, t− τ ;N − 1)dτ .

The densities g1(t) and gN (t) may be expressed with the use
of functions γ0(t) and γN (t):

g1(τ) =

∫ τ

0

γ0(t)l0(τ − t)dt

gN−1(τ) =

∫ τ

0

γN (t)lN (τ − t)dt , (13)

where l0(x), lN (x) are the densities of sojourn times at x =
0 and x = N respectively, while γ0(t) and γN (t) are the
probability densities that at time t the process enters to x = 0
or x = N are

γ0(t) = p0(0)δ(t) + [1− p0(0)− pN (0)]γψ,0(t)

+

∫ t

0

g1(τ)γ1,0(t− τ)dτ

+

∫ t

0

gN−1(τ)γN−1,0(t− τ)dτ ,

γN (t) = pN (0)δ(t) + [1− p0(0)− pN (0)]γψ,N (t)

+

∫ t

0

g1(τ)γ1,N (t− τ)dτ

+

∫ t

0

gN−1(τ)γN−1,N (t− τ)dτ , (14)

where γ1,0(t), γ1,N (t), γN−1,0(t), γN−1,N (t) are densities of
the first passage time between corresponding points, e.g.

γ1,0(t) = lim
x→0

[
α

2

∂φ(x, t; 1)

∂x
− βφ(x, t; 1)] , (15)

and for absorbing barriers,

lim
x→0

φ(x, t;x0) = lim
x→N

φ(x, t;x0) = 0 ,

hence γ1,0(t) = limx→0
α
2
∂φ(x,t;1)

∂x . The functions γψ,0(t),
γψ,N (t) denote the probability densities that the initial process
that started at t = 0 at the point ξ with density ψ(ξ) will end
at time t by entering respectively x = 0 or x = N .

The Laplace transform of the density function f(x, t;ψ) is

f̄(x, s;ψ) = φ̄(x, s;ψ) + ḡ1(s)φ̄(x, s; 1) (16)
+ḡN−1(s)φ̄(x, s;N − 1),

and the densities ḡ1(s), ḡN−1(s) are obtained from (13), (14),
(15) after their Laplace transform. The probabilities that at
time t the process has the value x = 0 or x = N are

p̄0(s) =
1

s
[γ̄0(s)− ḡ1(s)], (17)

p̄N (s) =
1

s
[γ̄N (s)− ḡN−1(s)].

The above solution gives the transient distribution of the
queue length and the transient probability of packet losses
when the buffer is full. The original functions of the Laplace
transforms can be obtained numerically using Stehfest’s algo-
rithm [35], valid for constant diffusion parameters, i.e. constant
traffic intensity λ. Therefore it is used for time intervals within
which parameters are constant and the solution at the end of
such interval serves as the initial condition, i.e. function ψ(ξ)



Fig. 6. The effect of abrupt changes the traffic arrival rate λ on the time
dependent behaviour of the expected packet delay at the router.

Fig. 7. Impact of abrupt changes in the queue utilisation ρ on the time
deendent behaviour of the expected packet delay.

in (9) in the next interval with different parameters. The mean
queueing delay was determined with the use of Little’s formula
but the first passage time approach is also possible.

III. NUMERICAL EXAMPLES

Based on the previous analysis, we have examined the
effect of changes in the levels of arriving traffic rates to a
router which may result from path changes created by SDN
controllers. We have assumed that the router’s packet buffer is
partitioned into N = 100 packet sections where each section
is reserved for a given active packet flow. When a packet
arrives to the buffer, the time it takes to scan the table that
contains the list of flows is assumed to be uniformly distributed
with average value S = 0.038ms and squared coefficient
of variation is 0.33; though these values will vary with the
router hardware, they are compatible with those of existing
equipment.

In Figure 6 the arriving traffic rates of a given flow vary
in the range of 500 to 2500 packets per second, and the
traffic level λ changes approximately every 100ms reflecting
relatively frequent path changes. We notice that, while at low
traffic values the mean delay of a packet closely matches the
steady-state value which is reached rapidly, at high values
the mean delay always remains in its transient state so that
the steady-state value is a poor predictor of the actual delay
experienced by packets. Similar results, for another sequence

Fig. 8. The effect of abrupt changes in the packet arrival rate on the time-
dependent behaviour of the expected queue length.

of changes in traffic arrival rate, are shown in Figure 7,
where the time-dependent mean packet delay is plotted against
the queue utilisation ρ = λS. Confirming the results of the
previous figure, we see here too that as ρ increases, the
mean packet delay through the router never actually attains
its steady-state value.

IV. CONCLUSIONS

Networks that are controlled by SDN are subject to frequent
changes in network state as the SDN controller modifies paths
in the network so as to optimize Quality of Service, Security or
Energy Consumption. These frequent changes may imply that
rather than running at a steady-state regime, the network will
mostly find itself in transitory states. Diffusions approxima-
tions are far more convenient for the transient analysis of ser-
vice systems, rather than queueing networks and discrete event
simulation. Therefore we examine the transient behaviour of
a network router with a diffusion approximation model to
evaluate both the transient and steady-state performance of
a network router, in order to predict packet delay through the
router, and its packet loss probability.

The diffusion approximation shows that the transitory be-
haviour of each router depends on the load which results from
the arrival rate of packets and the service process for each
packet leaving the router. The service process in turn depends
on the number of flows that the router handles because a
possibly large flow table has to be searched to determine each
incoming packet’s outgoing link [17]. Thus our model also
takes into account the dependence of the service time for each
outgoing packet on the size of the flow table.

Our analysis allows us to predict the time dependent be-
haviour of important performance metrics such as the mean
delay experienced by a packet at the router, the packet queue
length for each flow, and the packet loss probability. It also
shows that the time dependent behaviour tends much more
slowly to its steady-state when the system is more heavily
loaded. Numerical examples based on the analysis are also
presented to illustrate these insights.

As a consequence of our analyis we see that future work
should consider SDN based network optimization techniques



that focus both on the transient and steady-state behaviour,
because the steady-state may not be attained in many cases.

Future work should also compare these theoretical results
with measurements and investigate the performance impli-
cations of the detailed interaction of SDN controllers with
their connected routers. In addition, we hope to use diffusion
approximations to evaluate the performance of networks or
systems where the objective of the controls is to optimize the
performance of the system [36].
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