
Academic Editors: Yuh-Shyan Chen

and Wei Yi

Received: 16 October 2024

Revised: 3 January 2025

Accepted: 9 January 2025

Published: 16 January 2025

Citation: Gelenbe, E. Minimizing

Delay and Power Consumption at the

Edge. Sensors 2025, 25, 502. https://

doi.org/10.3390/s25020502

Copyright: © 2025 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Minimizing Delay and Power Consumption at the Edge
Erol Gelenbe 1,2,3

1 Institute of Theoretical & Applied Informatics, Polish Academy of Sciences (IITiS-PAN),
44-100 Gliwice, Poland; seg@iitis.pl

2 Université Côte d’Azur, CNRS I3S, 06107 Nice, France
3 Department of Engineering, King’s College, London SE1 8WA, UK

Abstract: Edge computing systems must offer low latency at low cost and low power con-
sumption for sensors and other applications, including the IoT, smart vehicles, smart
homes, and 6G. Thus, substantial research has been conducted to identify optimum
task allocation schemes in this context using non-linear optimization, machine learning,
and market-based algorithms. Prior work has mainly focused on two methodologies:
(i) formulating non-linear optimizations that lead to NP-hard problems, which are pro-
cessed via heuristics, and (ii) using AI-based formulations, such as reinforcement learning,
that are then tested with simulations. These prior approaches have two shortcomings: (a)
there is no guarantee that optimum solutions are achieved, and (b) they do not provide
an explicit formula for the fraction of tasks that are allocated to the different servers to
achieve a specified optimum. This paper offers a radically different and mathematically
based principled method that explicitly computes the optimum fraction of jobs that should
be allocated to the different servers to (1) minimize the average latency (delay) of the jobs
that are allocated to the edge servers and (2) minimize the average energy consumption of
these jobs at the set of edge servers. These results are obtained with a mathematical model
of a multiple-server edge system that is managed by a task distribution platform, whose
equations are derived and solved using methods from stochastic processes. This approach
has low computational cost and provides simple linear complexity formulas to compute
the fraction of tasks that should be assigned to the different servers to achieve minimum
latency and minimum energy consumption.

Keywords: edge computing; sensor networks; edge computing; latency minimization;
reducing energy consumption; G-networks; analytical solution

1. Introduction
The advent of the Internet of Things (IoT) and related technologies, such as smart

homes, smart vehicles, 5th generation (5G) networks, and beyond 5G, increase the need for
high throughput, low task delays, and low energy consumption through the development
of systems that provide computing and communication services at the edge [1,2]. While
radio access networks (RANs) and mobile base stations can massively increase the bandwidth
and throughput that is offered to end users through these technologies, applications are also
being moved from cloud computing platforms to the edge of the Internet [3–5] to achieve
high throughput with low latency and lower energy consumption [6,7]. Motivated by these
developments, much research has been conducted to allocate tasks in edge systems in a
manner that attempts to minimize latency and energy consumption using non-linear opti-
mization techniques [8,9] leading to NP-hard problems, which are processed with various
heuristics and approximations, or with AI-based approaches [10,11], such as reinforcement
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learning. These previous approaches have some shortcomings: (a) there is no guarantee
that optimum solutions are achieved, and (b) they do not provide a clear indication of
the fraction of tasks that should be allocated to the different servers to achieve a specified
optimum. Also, the parameters that are used by these methods must be measured and
updated to construct the required algorithms; the methods are computationally costly,
with additional overhead and energy consumption required for lightweight edge systems.
In addition, these approaches do not provide insight into the key parameters, such as
the task allocation rates or proportion of tasks that should be sent to different servers,
to guarantee that the system will operate at or near its optimum point.

Thus, this paper proposes a radically different, mathematically based, and principled
approach that explicitly computes the optimum fraction of jobs that should be allocated to
the different servers to either (1) minimize the average latency (delay) of the jobs that are
allocated to the edge servers or (2) minimize the average energy consumption of the jobs
that use the edge servers. To achieve these objectives, this paper develops a mathematical
model of a multiple-server system that is managed by a task dispatching platform (DP).
The model equations are derived and solved using methods from stochastic processes. We
then use this theoretical framework to explicitly derive the optimum workload distribution
that minimizes latency. The paper then uses a similar approach to derive an explicit
expression for the share of workload that should be allocated to each edge server that
minimizes the system’s additional energy consumption per task. The analytical approach
we develop has a low computational cost and provides detailed insight into the fraction of
tasks that are allocated to the different servers to achieve minimum latency and minimum
energy consumption.

1.1. The Main Results Presented in This Paper

After the review of related work on the design of task-dispatching algorithms that
optimize edge performance discussed in Section 1.2, the architecture of an edge system
that includes a decision platform (DP) that dispatches incoming external tasks to a set of
n servers is presented in Section 2. Then, the notation and symbols used in the paper are
summarized in Section 2.1. All the proofs related to the theoretical developments in the
paper are presented in detail in separate appendix sections that are clearly linked to the
sections where the results are presented.

A novel mathematical model of an edge system composed of the DP that sends tasks
to n servers is presented in Section 3. The Key Product Form Result for this model is stated
and proved in Theorem 1, and Lemma 1 shows that its solution accounts for the processing
of all the tasks that enter the system. Then, in Section 4, we show how the decision variables
Ci, 1 ≤ i ≤ n, which combine the requests from the n servers with the task assignment
decisions that are made by the DP to each server, affect the average latency of externally
arriving tasks at the DP.

Then, Section 5 derives the task allocation policy that minimizes the average response
time for all tasks being processed at the n servers in the system. Section 6 discusses the
power consumption of edge servers based on power measurements that were made on
NUCs and other processors, and we derive a policy that depends on the known parameters
of each server to share the tasks between servers to guarantee that the average energy
consumption for incoming tasks at the edge is minimized.

Finally, Section 7 provides conclusions and directions for further work.

1.2. Related Work

There has been considerable work on the design of algorithms for distributed system
management and task distribution to reduce response times for tasks and maximize data
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transfer throughputs [12,13]. Real-time techniques have been developed to this effect [14],
and various heuristics have often been tested in simulated environments to balance load
and reduce response times [15,16]. Energy consumption has been of increasing concern
over the last decade because of the steady increase observed over this period in the power
consumption of ICT [5,17,18].

Recent research in this area has been primarily motivated by the need for low-cost
distributed systems that offer computation and data-intensive applications close to the
network edge to achieve low latency [19] for mobile technologies, the IoT, and smart
vehicles [20]. Another motivation is the need for distributed computing facilities that locally
serve small-scale applications, such as smart homes [21], and in some recent work [22], a
system was considered where tasks that arrive at an edge server are either directly executed
there or off-loaded to a different server.

As early as the 1990s, the research community proposed AI-based dynamic network
management techniques [23–26] that were later facilitated by the introduction of Soft-
ware Defined Networks [27] to achieve improvements in network performance and se-
curity [28,29]. Attempts have been made to use reinforcement learning or, more broadly,
machine learning [30–32] as a tool to reduce latency and achieve power savings for tasks
that are sensitive to the “quality of service” [33]. Other work has integrated security needs
by managing tasks and flows of data so that insecure servers and networks may be dy-
namically avoided [34,35]. Market-based bidding techniques and games to design low
computational cost algorithms that have been shown to offer fast solutions at low cost
during simulations [36,37]. Some practical experiments have tested AI in distributed edge
systems using Software Defined Networks to reduce latency and improve power consump-
tion [38]. Since edge systems often fulfill multiple functions and support a variety of users,
the resulting optimization problems are often NP-hard, and heuristic approximations are
often investigated [39].

2. System Description
We consider an edge distributed computing system composed of a Dispatching Plat-

form (DP) that resides on a separate server with n machines or servers, S1, . . . , Sn, that
together form a cluster that is accessible through the Internet. Each Si receives local tasks
to execute, as well as tasks that are allocated to it by the DP. External tasks to be executed
by the edge system are received by the DP and assigned to the servers based on requests
from the servers.

The base station or external user shown in Figure 1 sends tasks to the DP, where they
are stored in an input queue as they wait for task requests from the n edge servers.

• When any Si completes the current task that it is executing, it makes a task request
from the DP with probability 1 ≤ pi ≤ 1. If the DP task input queue is empty, then the
request is simply rejected by the DP. If the DP task input queue contains at least one
task, then the DP assigns the task to Si with probability 0 ≤ ai ≤ 1.

• Thus, when Si terminates an ongoing task, a task from the incoming pool is dispatched
by the DP to Si with probability Ci = piai, provided that the input queue at the DP is
not empty. If the DP queue is empty, obviously, no task can be sent. This is equivalent
to assuming that when a server Si informs the DP that it has terminated a task, then
the DP allocates a task to Si with probability 0 ≤ Ci ≤ 1 if the DP has a task waiting at
its input. If there are no tasks waiting at the DP, then the request from Si is rejected.

• Note that task endings at the different servers occur asynchronously with each other,
and the decision of the DP is simply to send or not to send a new task to Si.

• Thus, each server has a queue of tasks, some of which have been sent by the DP and
others are local tasks that it receives and executes.
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Figure 1. Architecture of an edge system that allocates incoming tasks to a set of locally connected
servers for edge Computing [40]. It is composed of a Dispatching Plaform (DP) that dynamically
exploits the n distinct servers’ available capacity to allocate tasks, so as to minimize average task
delay, or to minimize total power consumption. Each server has its own incoming local flow of tasks,
and also requests and receives tasks from the DP.
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Figure 1. Architecture of an edge system that allocates incoming tasks to a set of locally connected
servers for edge computing [40]. It is composed of a Dispatching Platform (DP) that dynamically
exploits the n distinct servers’ available capacity to allocate tasks to minimize average task delay
or to minimize total power consumption. Each server has its own incoming local flow of tasks, and
each server requests and receives tasks from the DP.

External tasks arrive at the DP at a rate Λ > 0 (tasks per second), while each Si receives
“locally generated tasks”, e.g., from its local owner or user or as part of its operating system
at the following rate:

λi ≥ 0, λ =
n

∑
i=1

λi . (1)

The average execution time of each task at Si is denoted by µ−1
i .

The DP’s objective is to minimize the total average waiting time at the DP and the
average response time at all the n servers. However, it also aims to reduce the overall
energy consumption of the system. On the other hand, each Si must execute all the tasks it
has received locally, as well as those that it has requested from the DP and that the DP has
allocated to it. The Si may need to generate income from the external tasks it receives from
the DP. On the other hand, it also needs to provide low latency (i.e., low response time)
for all the tasks it receives. The DP, as well as all Si, also aims to keep the overall average
energy consumption as low as possible because of the cost of the energy and to achieve
greater sustainability.

2.1. Summary of Notation and Symbols and Abbreviations

In this sub-section, we present and define all the symbols that are used throughout
this paper.

• t ≥ 0 is the real-valued time variable.
• DP is the task dispatching platform that transfers tasks from the end users to

the servers.
• Si denotes a server that receives tasks assigned by the DP, as well as “locally generated

tasks”, e.g., from its local owner or user or as part of its operating system.
• Λ > 0 is the rate of arrival of external tasks to the DP.
• λi is the rate of arrival of locally generated tasks to Si.
• µi > 0 is the average service rate for tasks at the server Si. Thus, the average service

time per task at Si is 1
µi

.

• We define ρi =
λi
µi

, λ = ∑n
i=1 λi, and µ = ∑n

i=1 µi .
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• pi, 0 ≤ pi ≤ 1, is the probability that, when Si completes the current task that it is
executing, it requests to receive a task from the DP.

• ai, 0 ≤ ai ≤ 1, is the probability that the DP accepts Si’s request when the DP’s input
queue is non-empty.

• Ci = pi ȧi is the probability that when Si asks for a new task from the DP, it receives it
provided that a new task is available at the DP.

• y(t) ≥ 0 is the non-negative integer-valued length of the queue of externally arriving
tasks waiting at the Dispatching Platform (DP) at time t.

• yi(t) ≥ 0 is the integer-valued total number (queue length) of all the tasks that are in
the queue at Si at time t.

• k is a particular value of y(t).
• ki is a particular value of yi(t), and we define the vectors as follows:

Y(t) = (y(t), y1(t), . . . , yn(t)),

K = (k, k1, . . . , kn) .

• The following vectors are related to K = (k, k1, . . . , kn), where k ≥ 0, ki ≥ 0:

K−0 = (k − 1, k1, . . . , kn) i f k > 0,

K+0 = (k + 1, k1, . . . , kn), (2)

K−i = (k, k1, . . . , ki − 1, . . . , kn) i f ki > 0,

K+i = (k, k1, . . . , ki + 1, . . . , kn) .

• Φi is the fraction of external user tasks that the DP allocates to Si.
• Φ+

i is the fraction of external user tasks that the DP allocates to Si to minimize the
average task response time of the edge system.

• Φ∗
i is the fraction of external user tasks that the DP allocates to Si to minimize the

average energy consumption per external task assigned to the edge system.
• Xi = λi + ΦiΛ is the total arrival rate of tasks to server Si, i.e., the load of Si.
• Xi1 is the upper bound for the linear approximation of the power consumption of Si,

and Xi1 < µi

• qi =
λi+ΦiΛ

µi
is the utilization rate of server Si. If qi < 0, it can be interpreted as the

probability that Si is busy processing tasks.
• RDP is the average response time at the DP for externally arriving tasks.
• RS is the average response time of all tasks at the n servers.
• πi0 is the power consumption of server Si when the server is idle, i.e., when Xi = 0.
• πiM is the maximum power consumption of server Si. It is attained when Xi is just

under the value µi.
• αi > 0 is the approximate linear increase in power consumption of Si as a function of

the load Xi.
• πi(Xi) = πi0 + αiXi is the approximate power consumption of Si when its load is Xi,

for Xi < µi.
• π′

i is the derivative of πi(Xi) with respect to Φi.
• π′′

i is the second derivative of πi(Xi) with respect to Φi.
• E is the average energy consumption of the externally arriving tasks that are assigned

by the DP to the different servers, and E = ∑n
i=1 Φiπi(Xi)µ

−1
i .

3. Analytical Solution for the Dispatching Platform (DP) and Its n Servers
In this section, we construct a G-Network with triggered customer movement [41,42],

where the service times at all Si are mutually independent and exponentially distributed
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random variables, with parameter µi for Si, and the interarrival times of external tasks
to the DP is a Poisson process of rate Λ. The arrivals of local tasks at each Si constitute a
mutually independent Poisson process with rate λi and are independent of all the service
times at the servers. Thus, in a small time interval of length ∆t, an external task arrival
occurs to the DP with probability Λ∆t + o(∆t), a local task arrives to any server Si with
probability λi∆t + o(∆t), and provided that there is a local task at Si (i.e. ki > 0), a local
task ends its service at Si with probability µi∆t + o(∆t). Here, o(∆t) represents a function
that tends to zero with ∆t, i.e., lim∆t→0

o(∆t)
∆t = 0.

Also, when a service completes at Si, the server requests to receive a new task from
the DP with probability pi, which is allocated instantaneously with probability ai if k > 0
or refused with probability (1 − ai) or accepted with probability pi and not allocated when
k = 0. Thus, the following state transitions occur:

• K → K+0 with probability Λ∆t + o(∆t).
• K → K+i with probability λi∆t + o(∆t).
• K+0 → K with probability µiCi∆t + o(∆t) when ki > 0 (a task at Si departs but is

immediately replaced by a task from the DP).
• K+i → K, with probability µiCi∆t + o(∆t) when k = 0 (a task at Si departs; the request

for a new task is made but the DP queue is empty (i.e., k = 0 and, therefore, the DP
has no tasks to send to Si).

• K+i → K with probability µi(1 − Ci)∆t + o(∆t) obtained from

[µi(1 − pi) + µi pi(1 − ai)]∆t + o(∆t) = µi(1 − Ci)∆t + o(∆t) (3)

independently of the value of k or ki; note that these values refer to the quantities in
the vector K = (k, k1, . . . , kn).

• K → K, with probability 1 − (Λ + λi + µi1[ki > 0])∆t + o(δt).

Then, the probability p(K, t) = Prob[Y(t) = K] satisfies the following system (4) of
Chapman–Kolmogorov differential-difference equations:

dp(K, t)
dt

= −p(K, t)
[
Λ +

n

∑
i=1

(µi1[ki > 0] + λi)
]
+ Λp(K−0, t)1[k > 0]

+
n

∑
i=1

[
λi p(K−i, t)1[ki > 0] + µiCi p(K+0, t)1[ki > 0]

+µiCi p(K+i, t)1[k = 0] + µi(1 − Ci)p(K+i, t)
]
. (4)

We now state the following result, which we use throughout this paper. The proof of
Theorem 1 is detailed in Appendix A .

Theorem 1 (Key Product Form Result). Assume that the arrival processes whose rates are
Λ, λ1, . . . , λn are all independent Poisson processes and that the service rates µi, 1 ≤ i ≤ n, are
parameters of independent exponentially distributed random variables, which are also independent
of the inter-arrival times. Then, if the system of simultaneous non-linear equations

q =
Λ

∑n
i=1 qiµiCi

, qi =
λi + qqiµiCi

µi
=

ρi
1 − qCi

, 1 ≤ i ≤ n , (5)

has a solution that satisfies 0 < q < 1, 0 < qi < 1, then this solution is unique, and

lim
t→∞

Prob
[
x(t) = k, x1(t) = k1, . . . , xn(t) = kn

]
= qk(1 − q)

n

∏
i=1

qki
i (1 − qi), (6)
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where

q = lim
t→∞

Prob
[
x(t) > 0

]
, qi = lim

t→∞
Prob

[
xi(t) > 0

]
. (7)

Note: The denominator of the expression for q in (5) represents the fact that each server Si will notify
the DP with probability pi when Si’s ongoing job ends, that it is ready to receive a task from the DP,
and that the DP will respond by sending a task to Si with probability ai so that Ci = pi · ai. The rate
at which such requests arrive to the DP from Si is, therefore, qiµi pi, and the rate at which the DP
sends tasks to Si is qiµiCi. Note that both of the equations in (5) are non-linear, contrary to those of
an ordinary “Jackson” (open) or “Gordon–Newell” (closed) product-form queueing network [43,44].

Corollary 1. From (6), it is easy to show that when q < 1, the average total number of jobs at
steady state NDP in the input queue to the DP is

NDP =
q

1 − q
, (8)

and the average total number of jobs at steady state Ni that are in the input queue of Si is

Ni =
qi

1 − qi
. (9)

The expression for qi in (5) has the intuitive property that we now prove; namely, when the
stationary solution exists, the total incoming flow of jobs to the DP and the servers Si is identical to
the outgoing flow of jobs whose service ends at the n servers, which we use in the proof of Theorem 1
given in Appendix A.

Lemma 1. Let us denote

λ =
n

∑
i=1

λi . (10)

Then, if 0 < qi < 1, 0 < q < 1, it follows that

n

∑
i=1

qiµi = Λ + λ . (11)

Remark 1. The expression (11) is an intuitive “flow conservation” identity at steady state for a
stable system, which states that all the work that arrives at the DP or that arrives locally to the n
servers is eventually processed by one of the n servers.

Proof of Lemma 1. As a consequence of the expressions for q and qi in (5), we can write

n

∑
i=1

qiµi =
n

∑
i=1

λi[1 +
∞

∑
l=1

(qCi)
l ],

and using the expression for q in (5), we obtain

n

∑
i=1

qiµi = λ +
Λ

∑n
j=1 qjµjCj

.
n

∑
i=1

λi
1 − qCi

= λ +
Λ

∑n
j=1 qjµjCj

.
n

∑
j=1

qjµjCj = λ + Λ, (12)

which completes the proof.

Corollary of Lemma 1. Since we assume that 0 < qi < 1, 1 ≤ i ≤ n, the following holds:

Denoting ρi =
λi
µi

, we have : ρi < 1 − qCi, and hence Ci <
1 − ρi

q
. (13)
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4. Minimizing the Average Response Time or Average Delay at the DP
The well-known “Little’s Formula” [45] can be used to compute the average response

time of tasks entering through the DP and of tasks entering the edge system composed of n
servers. Here, Λ is the total arrival rate of externally arriving tasks to the DP and qqiµiCi is
the arrival rate of tasks from the DP to server Si.

Since Λ is the total arrival rate of such tasks, if RDP denotes the average response time
of tasks at the DP before they are assigned to a server, by Little’s Formula and Equation (8)
in Corollary 1, we have

RDP =
NDP

Λ
=

1
Λ

q
1 − q

, (14)

and we would like to know how we should choose Ci, i = 1, . . . , n, to minimize RDP.
To this effect, the following result is needed:

Theorem 2. Let 0 < qi < 1, and denote Di =
dq
dCi

, dij =
dDi
dCj

. It follows that Di < 0, dij < 0,
and dii > 0 for i , j = 1, . . . n, j ̸= i.

The proof of Theorem 2 is given in Appendix B.

Using (14), we can derive

dRDP
dCi

=
1
Λ

Di
1 − q

,
d2RDP

dC2
i

=
1
Λ

dii(1 − q) + D2
i

(1 − q)2 . (15)

Then, also using Theorem 2, we have dRDP
dCi

< 0 and d2RDP
dC2

i
> 0 for i = 1, . . . , n.

Theorem 3. Using (14), (15), and Theorem 2, it follows that for fixed Λ, the average response time
RDP for a task that arrives from the MBS or an external user to the DP, until it is assigned to one
of the server input queues, is minimized with respect to 0 ≤ Ci ≤ 1 by taking the largest possible
value of Ci, which is Ci = 1. When all the Ci, 1 ≤ i ≤ n, are set to Ci = 1, then RDP attains its
minimum value wth respect to the vector C = (C1, . . . , Cn).

5. Minimizing the Average Response Time RS at the Edge Servers
Different edge servers have different task processing rates µi and different local task

arrival rates λi. Therefore, it is worth understanding how the DP should share the tasks
that it receives among the edge servers to achieve a minimum average response time RS

for all the tasks, both those that arrive locally to each server and those that are assigned
by the DP. Let Φi denote the proportion of incoming external tasks that the DP assigns to
server Si:

Φi =
qiµiCi

∑n
j=1 qjµjCj

,
n

∑
j=1

Φj = 1, (16)

so that the total arrival rate of tasks arriving to reach Si is λi + ΛΦi. As a result, when
q < 1, qi < 1, i = 1, . . . , n, in steady state, the average number of tasks NS at the n servers
can be obtained from (6) in Theorem 1 as

NS =
n

∑
i=1

Ni =
n

∑
i=1

qi
1 − qi

, where qi =
λi + ΛΦi

µi
, (17)

and by Little’s Theorem, we have

RS =
1

Λ + λ

n

∑
i=1

qi
1 − qi

=
1

Λ + λ

n

∑
i=1

λi + ΛΦi
µi − λi − ΛΦi

, where λ =
n

∑
i=1

λi . (18)
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We can now state the following result, whose proof is given in Appendix C.

Theorem 4. Let 0 ≤ q < 1, 0 ≤ qj < 1 for 1 ≤ j ≤ n. Then, the average response time at steady
state for all tasks that are processed by the n servers, denoted by RS, attains its global minimum
with respect to the vector Φ = (Φ1, . . . , Φn) when Φj is equal to Φ∗

j :

Φ∗
j =

µj − λj

Λ
− µ − Λ − λ

Λ

√
µj
µ1

[∑n
i=1

√
µi
µ1
]
, 1 ≤ j ≤ n, where µ =

n

∑
j=1

µj ,

=

√
µj
µ1

[∑n
i=1

√
µi
µ1
]
+

1
Λ
[
µj − λj − (µ − λ)

√
µj
µ1

[∑n
i=1

√
µi
µ1
]

]
, 1 ≤ j ≤ n . (19)

Communication Overhead and Computational Cost. From (19), we see that the terms

µ and

√
µj
µ1

[∑n
i=1

√
µi
µ1
]
, (20)

can be computed in advance once and for all for a given set of n servers since they only depend on
the server speed parameters µi, i = 1, . . . , n, and do not need to be re-computed for each decision. Λ
is known by the DP, which locally monitors the external arrival rate of tasks, and no communication
is needed to update Λ. The parameters λj must be updated in (19) and should be sent by each Sj to
the DP (where the task assignment decision is taken) each time λj changes. This boils down to a
periodic communication overhead of, at most, a total of n packets that are sent from the servers to the
DP. From a computational standpoint, obtaining (19) only requires four additions and subtractions
and two multiplications for each of the n values Φ∗

j .

Corollary 2. The minimum value of RS, denoted R∗
S is

R∗
S =

1
Λ + λ

n

∑
j=1

λj + ΛΦ∗
j

µj − λj − ΛΦ∗
j
=

1
Λ + λ

n

∑
j=1

µj

µj −
√

µj
µ1

λj − ΛΦ∗
j

. (21)

Corollary 3. In many cases of interest, an edge system is composed of the DP and n identical
servers Si, which, in general, have different local loads λi so that we have µi = µ, 1 ≤ i ≤ n.
In this case, RS is minimized when

Φ∗
i = Φ∗

1 +
λ1 − λi

Λ
, 2 ≤ i ≤ n, Φ∗

1 =
1
n
[1 +

∑n
i=2(λi − λ1)

Λ
] . (22)

6. Minimizing Energy Consumption
An important system performance metric of interest is the energy consumption of the

system. As an example, the measured power and energy consumption characteristics of an
Intel NUC processor [46] that is widely used in edge systems are shown in Figure 2 based
on accurate measurements that were reported in [47].

Let us note from (11) and (12) that Λ is the total arrival rate of external tasks to the DP;
these are, in turn, assigned by the DP to the n edge servers. Also, we define Xi = λi + ΛΦi,
where (as previously in this paper) λi is the local arrival rate of tasks to Si and Φi is the
fraction of externally arriving tasks that are allocated by the DP to Si.
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Figure 2. The curve on the left shows the power consumption that was measured on an NUC versus
its overall arrival rate of workload. There is a substantial power consumption of close to 63% of its
maximum value when the NUC is idle. We observe that the power consumption attains its maximum
value of 30 Watts as the workload increases. The curve on the right shows the corresponding energy
consumption per arriving request in Joules as a function of the load.

The curve on the left in Figure 2 shows the rise in the power consumption as a function
of its load, expressed as the arrival rate of workload to the NUC, starting from a value of
roughly 19 Watts when the NUC is idle and attaining a maximum value of approximately
30 Watts when the NUC is fully loaded. The curve on the right in Figure 2 shows the energy
consumption in Joules per arriving request as a function of the total arrival rate of tasks Xi

to server Si.
Indeed, the curve on the left-hand-side of Figure 2 and the different measurement

curves shown in Figure 3 also suggest the following representation for the power consump-
tion πi(Xi) of server Si (23), where Xi = λi + ΛΦi, rising from the power consumption
πi0 when Si is idle, up to its maximum power consumption denoted by πiM. Thus, these
measurement results indicate that the power versus workload characteristics of a server
may be represented by a piece-wise linear approximation consisting of a straight line from
Xi = 0 to Xi = Xi1 with a positive slope and a second flat (nearly zero slope) straight
line from Xi1 to higher values of Xi. Also, Xi1 is smaller than the maximum processing or
service rate µi of server i. We, therefore, use this observation to express the approximation
for 0 ≤ Xi ≤ Xi1 with πi(Xi1) = πiM as

πi(Xi) = πi0, i f Xi = 0,

= πi0 + αiXi , i f 0 ≤ Xi ≤ Xi1 < µi , (23)

where αi > 0 is a positive constant that depends on the specific server being considered.
We can then define the first and second derivatives of πi(Xi) with respect to Φi:

π′
i =

dπi(Xi)

dΦi
, π′′

i =
d2πi(Xi)

dΦ2
i

. (24)

When i ̸= 1, we have, for Xi < µi,

π′
i = αiΛ, π′′

i = 0, f or αi > 0, when 0 ≤ Xi < Xi1 . (25)



Sensors 2025, 25, 502 11 of 18

Also, since Φ1 = 1 − ∑n
i=2 Φi, we have dΦ1

dΦi
= −1 for i ̸= 1. Thus, the first and second

derivatives of π1(X1) with respect to Φi for i ̸= 1 are

dπ1(X1)

dΦi
= −α1Λ, f or α1 > 0,

d2π1(X1)

dΦ2
i

= 0, f or 0 ≤ X1 < X11. (26)

WattsWatts

Load Load

Power

In

Watts

Straight

Line

Approximation

Watts

Load
Figure 3. We illustrate the measured characteristics of the power consumption Πi(Xi) along the
y-axis in Watts, versus the load Xi along the x-axis in tasks/sec for several different servers, showing
the approximately linear increase in power consumption at some rate αi > 0, which depends on the
characteristics of the different processors, between the zero load level (no task arrivals and the server
is idle), which corresponds to πi0, up to close to the maximum value of the power consumption that
we denote by πiM. Note that the value X1i cannot exceed the maximum processing rate of jobs µi of
Si. The linear characteristic is displayed as a straight red line on top of the measured data that are
also shown in the figure. The rightmost curve refers to the NUC whose characteristics are discussed
in Figure 2.

Allocating Incoming Tasks to Minimize the Average Additional Energy Consumed by the Servers

If the DP sends an externally arriving task to server Si, we know that the task waits
for some time, and then it will be processed during µ−1

i time units on average. If the power
consumption of Si is πi and Φi is the probability that the DP has chosen to send the task to
Si, then the energy that is consumed by the task is simply πi × µ−1

i .
Therefore, the expected average energy consumption E for executing a task sent from

the DP to the edge system composed of n servers is

E =
n

∑
i=1

[ Φi ×
πi(Xi)

µi
]. (27)

This leads us directly to the following result, whose proof is given in Appendix D.

Theorem 5. Assuming the power consumption characteristic given in (23), the proportion of
incoming traffic that should be allocated to server Si to minimize E for j = 2, . . . , n is

Φ+
j = Φ+

1
α1µj

αjµ1
+

1
2Λαj

[π10
µj

µ1
− πj0] , (28)

where

Φ+
1 =

1 + 1
2Λ ∑n

i=2[
πi0
αi

− π10
µ1

µi
αi
]

1 + α1
µ1

∑n
i=2

µi
αi

. (29)

As would be expected, when all the servers are identical with πi0 = πi1, αi = α1, µi = µ1 for
i = 2, . . . , n, we have Φ+

1 = 1
n , and Φ+

j = Φ+
1 , 2 ≤ j ≤ n.
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Communication Overhead and Computational Overhead. Since the parameters αj, µj, πi0

are fixed and can be known in advance for the servers Sj, j = 1, . . . , n, the terms ∑n
i=2[

πi0
αi

− π10
µ1

µi
αi
],

1 + α1
µ1

∑n
i=2

µi
αi

,
α1µj
αjµ1

, and 1
2αj

[π10
µj
µ1

− πj0] can be computed just one time in advance for
j = 2, . . . , n. The only parameter in (28) and (29) that must be measured is Λ; it is measured
directly by the DP, which uses it to compute the values of Φj that minimize E. Therefore, there is
no communication overhead involved in choosing the fraction of externally arriving tasks assigned
to each server to minimize the additional average energy consumption E. Considering the compu-
tational overhead, we note that the computation of Φ+

i involves an additional addition and two
divisions. The computation of each of the remaining Φ+

j involves one additional multiplication, one
division, and one addition. Thus, we see that the number of arithmetic operations needed to compute
all of the n values of Φ+

j is 3n for each new value of Λ.

7. Conclusions
Edge computing systems, composed of clusters of processors, are particularly im-

portant for supporting the low latency, high throughput, and low power consumption
needs of mobile base stations and other communication systems. Their aim is to provide
crucial low latency and sustainable low energy consuming services for the Internet of
Things and support the transition of communications to 5G and 6th generation (6G) mobile
networks. Thus, considerable work has been devoted to the design of different types of
algorithms for configuring them, dynamically or statically, to optimize the allocation of
tasks to edge system servers.

Much prior work has used machine learning, including reinforcement learning, non-
linear optimization methods, and market-based mechanisms, and some of these methods
have been tested in experimental environments. Though this work has been extremely
useful in generating experience about the manner in which edge systems can be imple-
mented, it comes at the cost of extensive simulations and time-consuming real-system
experimentations. Furthermore, the machine learning-based approaches, such as that in
our earlier work [10,47], do not provide insight into the fraction of tasks that should be
allocated to different servers to achieve optimality.

Thus, in the present work, we address the edge computing design process through
an analytical model that results in explicit formulas for optimal task allocation, minimal
task latency, and minimal energy consumption of the system as a whole. We show that this
approach leads to simple formulas that provide the optimum share of externally arriving
tasks that should be assigned to each edge server. We also observe that these formulas
are computationally very simple and that they lead to very low communication overhead.
In future work, we plan to prioritize the execution of locally generated tasks and remote
tasks and include the effect of different types of tasks being executed in the system.

We also plan to implement the proposed algorithms in an experimental test bed and
compare various machine learning-based algorithms and other simple heuristics (such as
greedy algorithms) to see how close they can get to achieving the optimum performance
obtained via the analytical approach.
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Appendix A
Proof of Theorem 1 (Key Product Form Result). For the Equation (4) at steady state, we
set dp(K,t)

dt = 0 and drop the dependency on t to write

p(K)
[
Λ +

n

∑
i=1

(µi1[ki > 0] + λi)
]

= Λp(K−0)1[k > 0] +
n

∑
i=1

[
λi p(K−i)1[ki > 0]

+µiCi p(K+0)1[ki > 0] + µiCi p(K+i)1[k = 0]

+µi(1 − Ci)p(K+i)
]
. (A1)

Then, we divide both sides of (A1) by p(K) and substitute the expression from (6), to obtain

[
Λ +

n

∑
i=1

(µi1[ki > 0] + λi)
]
=

Λ
q

1[k > 0]

+
n

∑
i=1

[λi
qi

1[ki > 0] + µiCiq1[ki > 0] + µiCiqi1[k = 0]

+µi(1 − Ci)qi
]
.

Now, substituting µiqi = λi
1−qCi

from the expression for qi in (5) and the expression
q = Λ∑n

i=1 qiµiCi, we have

[
Λ +

n

∑
i=1

(µi1[ki > 0] + λi)
]
=

n

∑
i=1

qiµiCi1[k > 0]

+
n

∑
i=1

[
µi(1 − qCi)1[ki > 0] + µiCiq1[ki > 0] + µiCiqi1[k = 0]

+µi(1 − Ci)qi
]
,

or canceling identical terms with opposite signs and summing identical terms for k > 0
and k = 0], we obtain

[
Λ +

n

∑
i=1

(µi1[ki > 0] + λi)
]
=

n

∑
i=1

qiµiCi1

+
n

∑
i=1

[
µi1[ki > 0] + µi(1 − Ci)qi

]
.

Now, canceling identical terms on both sides of the equation and also canceling identical
terms with opposite signs on the right-hand side, we are left with

Λ +
n

∑
i=1

λi =
n

∑
i=1

µiqi.

However, by Lemma 1, the right-hand side and left-hand side of the above equation
are identical; hence, the solution (5) and (6) has now been proved. The uniqueness of
the solutions of the non-linear Equation (5) follows from the known uniqueness of the
stationary solution of the Chapman–Kolmogorov differential-difference Equation (4) [48,49].
This completes the proof of the Key Product Form (Theorem 1).



Sensors 2025, 25, 502 14 of 18

Appendix B
Proof of Theorem 2. We use (5) to derive

Di = −
Λ[∑n

j=1 djiµjCj + qiµi]

[∑n
j=1 qjµjCj]2

,

= − q2

Λ
[

n

∑
j=1

djiµjCj + qiµi],

dji = ρj
DiCj + q1[i = j]

[1 − qCj]2
, (A2)

=
q2

j

ρj
[DiCj + q1[i = j]]. (A3)

As a consequence, we can write

Di = − q2

Λ
[

n

∑
j=1

q2
j

ρj
DiµjC2

j +
q2

i
ρi

qµiCi + qiµi],

= −q2
qiµi[1 +

qi
ρi

qCi]

Λ + q2 ∑n
j=1

q2
j

ρj
µjC2

j

= −q
qiµi[1 +

qi
ρi

qCi]

∑n
j=1 qjµjCj[1 + q

qj
ρj

Cj]
,

= −q
λi

(1−qCi)2

∑n
j=1

λjCj
(1−qCj)2

. (A4)

Thus, (A4) tells us that if q > 0 and all the qi > 0, then all Di < 0.
Now, substituting (A4) back into (A3), we have

dji = q[
q2

j

ρj
1[i = j]−

q2
j

ρj

λiCj
(1−qCi)2

∑n
l=1

λlCl
(1−qCl)2

],

= q[
q2

j

ρj
1[i = j]− q2

i µi

ρi

q2
j Cj
ρj

∑n
l=1

q2
l µlCl

ρl

],

= q
q2

i
ρi
[1[i = j]− µi

q2
j Cj
ρj

∑n
l=1

q2
l µlCl

ρl

]. (A5)

Since the first term (which is non-negative) in (A5) vanishes when i ̸= j, we can see that
dji < 0 for i ̸= j.

The last part of the proof must establish that dii > 0. Using (A5), we write

dii = q
q2

i
ρi
[1 −

q2
i µiCi

ρj

∑n
l=1

q2
l µlCl

ρl

],

so that dii > 0 is obvious as long as n > 1, 0 < ql < 1 and all Cl > 0. Hence, under these
conditions, we have dii > 0. This completes the proof of Theorem 2.



Sensors 2025, 25, 502 15 of 18

Appendix C
Proof of Theorem 3. We start from (16) and (18) to write

RS =
1

Λ + λ

n

∑
i=1

λj + ΛΦi

µi − λi − ΛΦi
, with Φ1 = 1 −

n

∑
i=2

Φi , (A6)

so that for 2 ≤ i ≤ n we have dΦ1
dΦi

= −1 and

dRS
dΦi

=
Λ(µi − λi − ΛΦi) + Λ(λi + ΛΦi)

(µi − λi − ΛΦi)2

1
Λ + λ

[
Λ(µ1 − λ1 − ΛΦ1) + Λ(λ1 + ΛΦ1)

(µ1 − λ1 − ΛΦ1)2 ] ,

=
Λ

Λ + λ
[

µi
(µi − λi − ΛΦi)2 − µ1

(µ1 − λ1 − ΛΦ1)2 ] , (A7)

d2RS

dΦ2
i

=
Λ2

Λ + λ
[

µi
(µi − λi − ΛΦi)3 +

µ1

(µ1 − λ1 − ΛΦ1)3 ]. . (A8)

Since qi < 1 for all 1 ≤ i ≤ n, it follows from (A8) that d2RS
dΦ2

i
> 0. Therefore, the minimum

of RS with respect to Φi , i = 1, . . . , n, is obtained from (A7) when

dRS
dΦi

= 0, or (µ1 − λ1 − ΛΦ∗
1)

√
µi
µ1

= µi − λi − ΛΦ∗
i . (A9)

Using Φ∗
1 = 1 − ∑n

i=2 Φ∗
i and summing both sides of (A9) over 2 ≤ i ≤ n, we have

(µ1 − λ1 − ΛΦ∗
1)

n

∑
i=2

√
µi
µ1

= µ − µ1 − λ + λ1 − Λ + ΛΦ∗
1 , or

ΛΦ∗
1 [1 +

n

∑
i=2

√
µi
µ1

] = (µ1 − λ1)[1 +
n

∑
i=2

√
µi
µ1

] + (µ − Λ − λ), or

ΛΦ∗
1 = µ1 − λ1 −

µ − Λ − λ

1 + ∑n
i=2

√
µi
µ1

, and Φ∗
i =

µi − λi
Λ

− µ − Λ − λ

Λ

√
µi
µ1

∑n
j=1

√
µj
µ1

, (A10)

and the proof is complete.

Appendix D

Proof of Theorem 4. Let us use the notation E′
i , E′′

i , and π′
i to denote dE

dΦi
, d2E

dΦ2
i
, and dπi

dΦi
,

respectively, 1 ≤ j ≤ n. Using the fact that ∑n
j=1 Φj = 1, we obtain the following

expressions for i ̸= 1:

E′
i =

πi
µi

+ Φi ×
π

′
i

µi
− π1

µ1
− Φ1 ×

π′
1

µ1
, (A11)

E′′
i =

π′
i

µi
+ Φi ×

π
′′
i

µi
+

π
′
i

µi
+

π′
1

µ1
+

π′
i

µi
+ Φ1 ×

π′′
1

µ1
. (A12)
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We see easily that E′′
i > 0 when 0 ≤ Xi < Xi1 for i ̸= 1. Thus, for i ̸= 1, the value Φ+

i of Φi

that minimizes E is attained by setting E′
i = 0 in (A11), leading to

Φ+
i

π
′
i

µi
= Φ+

1
π′

1
µ1

+
π1

µ1
− πi

µi
, or

Φ+
i = Φ1

α1µi
αiµ1

+ µi
π10 + α1λ1 + α1Φ+

1 Λ
αiΛµ1

− πi0 + αiλi + αiΦ+
i Λ

αiΛ
,

2Φ+
i = 2Φ+

1
µiα1

µ1αi
+

λ1µiα1

Λµ1αi
− λi

Λ
+

µi
µ1

π10 − πi0

αiΛ
, yielding

Φ+
i = Φ+

1
µiα1

µ1αi
+

µi
µ1

π10 − πi0

αiΛ
. (A13)

Summing both sides of (A13) from 2 to n, we obtain

1 − Φ+
1 = Φ+

1
α1

µ1

n

∑
2

µi
αi

+
π1

Λµ1

n

∑
2

µi
αi

−
n

∑
2

πi
Λαi

= Φ+
1

α1

µ1

n

∑
2

µi
αi

+
π1

Λµ1

n

∑
2

µi
αi

−
n

∑
2

πi0
Λαi

−
n

∑
2

Φ+
i , implying that :

2(1 − Φ+
1 ) = Φ+

1
α1

µ1

n

∑
2

µi
αi

+ (
π10

Λµ1
+ Φ+

1
α1

µ1
)

n

∑
2

µi
αi

−
n

∑
2

πi0
Λαi

, or

2(1 − Φ+
1 ) = 2Φ+

1
α1

µ1

n

∑
2

µi
αi

+
π10

Λµ1

n

∑
2

µi
αi

−
n

∑
2

πi0
Λαi

, that yields :

Φ+
1 =

1 + 1
2Λ ∑n

2 [
πi0
αi

− π10
µ1

µi
αi

]

1 + α1
µ1

∑n
2

µi
αi

. (A14)

Finally, (A13) and (A14) provide us with the expression

Φ+
i = Φ+

1
µiα1

µ1αi
+

π10µi
Λαiµ1

+ Φ+
1

α1µi
αiµ1

− πi0
Λαi

− Φ+
i , or

= Φ+
1

α1µi
αiµ1

+
1

2Λαi
[π10

µi
µ1

− πi0] . (A15)
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